Galactos Project Solves One of Cosmology’s Hardest Challenges

By Linda Barney

October 2, 2017

The nature of dark energy and the complete theory of gravity are two of the central questions currently facing cosmologists. As the universe evolved, the expansion following the Big Bang initially slowed down due to gravity’s powerful inward pull. Presently, dark energy–a mysterious substance that seems to be associated with the vacuum of space itself–is pushing the universe outwards more strongly than gravity pulls in, causing the universe to not only expand but to do so faster and faster.

While dark energy constitutes 72 percent of the universe’s current energy density, its fundamental nature remains unknown. Much of today’s scientific work is trying to understand the interplay between gravity and dark energy in an effort to understand the current state of the universe.

There is an open problem in astronomy and cosmology in computing the anisotropic (direction-dependent) and isotropic (direction-averaged) 3-point correlation (3CPF) function which provides information on the structure of the universe. According to Prabhat, Big Data Center (BDC) Director and Group Lead for the Data and Analytics and Services team at Lawrence Berkeley National Laboratory’s (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC), “Cosmologists and astronomers have wanted to perform the 3-point computation for a long time but could not do so because they did not have access to scalable methods and highly optimized calculations that they could apply to datasets.”

A project called Galactos has made a major breakthrough in successfully running the 3-point correlation calculation on Outer Rim, the largest known simulated galaxy dataset that contains information for two billion galaxies. The Galactos project is part of the Big Data Center collaboration between NERSC, Berkeley Lab and Intel.

“Essentially, we performed the entire 3CPF computation on two billion galaxies in less than 20 minutes and have solved the problem of how to compute the 3-point correlation function for the next decade. This work would not be possible without the use of high performance computer (HPC) systems, efficient algorithms, specialized software and optimizations,” states Prabhat.

Overview of the Galactos Project

According to Debbie Bard, Big Data Architect, Berkeley Lab who will be hosting a poster session on this topic at the Intel HPC Developers Conference just prior to SC17, “The statistics that our team uses to characterize the structure of matter in the universe are correlation functions. Our calculations provide information on how matter is clustered as well as insights about the nature of gravity and dark energy. The 2-point correlation function (2PCF) looks at pairs of galaxies and the distribution of galaxy pairs.[1] The 3-point correlation (3PCF) calculation, which looks at triplets, provides more detail about the structure of the universe, because you’ve added an extra dimension. 3PCF is rarely studied because it is very hard to calculate and it is computationally intensive. We felt if we could solve this problem from an algorithmic and computational point of view, then we would enable scientists to access the extra information about the structure of the universe.”

Figure 1: Over time, the attractive force of gravity and the expansive force of dark energy create a web-like structure of matter in the universe. Courtesy of Lawrence Berkeley National Laboratory.
Specifications of Cori HPC System

The Galactos code ran on the NERSC Cori system at Lawrence Berkeley National Laboratory. Cori is a Cray XC40 system featuring 2,388 nodes of Intel Xeon Processor E5-2698 v3 (named Haswell) and 9,688 nodes (recently expanded from 9,304) of Intel Xeon Phi Processor 7250 (named Knights Landing). The team performed all computations on Intel Xeon Phi nodes. Each of these nodes contains 68 cores (each supporting 4 simultaneous hardware threads), 16 GB of on-package, multi-channel DRAM (“MCDRAM”), and 96 GB of DDR4-2400 DRAM. Cores are connected in a 2D mesh network with 2 cores per tile, and 1 MB cache-coherent L2 cache per tile. Each core has 32 KB instruction and 32 KB data in L1 cache. The nodes are connected via the Cray Aries interconnect.


Process used in the 3-point Computation

Figure 2 shows the image of a simulated miniature universe containing 225,000 galaxies in a box, and provides information on how galaxies are grouped together in a structured way rather than randomly distributed. The Galactos computation process involves three major steps. Around a selected primary galaxy, the algorithm first gathers all galaxy neighbors (secondaries) within a maximum distance Rmax and bins them into spherical shells. It then rotates all coordinates so that the line of sight to the primary from an observer is along the z-axis, and transfers all of the secondaries’ separation vectors from the primary to that frame. Then the algorithm expands the angular dependence of the galaxies within each bin into spherical harmonics, a particular set of mathematical functions. This expansion is represented by the shading in the Expand portion of the graphic.

Figure 2: Depiction of process used in the Galactos project. Courtesy of Lawrence Berkeley National Laboratory.

The Galactos algorithm is parallelized across nodes by taking all 2 billion galaxies in the dataset and breaking them into smaller boxes using the highly efficient k-d tree algorithm developed by Intel. There is also a halo exchange component to expand a fixed box by 200 megaparsecs (200 Mpc = 300 million light years) on each face and pull in all of the galaxies that reside within the extended region. Each node has all the galaxies it needs to determine the full 3PCF and need not communicate with any other nodes until the very end.

O(N2) Algorithm Speeds 3CPF Computation

Galactos used a highly scalable O(N2) algorithm originally created by Zachary Slepian, Einstein Fellow at Berkeley Lab, in conjunction with Daniel Eisenstein, Slepian’s PhD advisor and professor of astronomy at Harvard University. In addition, the team used optimized k-d tree libraries to perform the galaxy spatial partitioning. Brian Friesen (Berkeley Lab, HPC Consultant) and Intel worked on optimizing the code to run across all 9,636 nodes of the NERSC Cori supercomputer.

According to Slepian, “Counting all possible triangles formed by a set of objects is a combinatorially explosive challenge: there are an enormous number of possible triangles. For N objects, there are N options for the first choice, N-1 for the second, and N-2 for the third, leading to N(N-1)(N-2) triangles. If the number of objects is very large, this is roughly N3.

The key advance of our O(N2) algorithm is to reorder the counting process to reduce the scaling to N2. In practice, this means a speed-up of 500X or more over a naive, ‘just-counting’ approach.

The algorithm exploits the fact that, in cosmology, we want our result to be binned in triangle side length. For example, I might report a result for triangles with the first side between 30 and 60 million light years and second side between 90 and 120 million light years. Our algorithm manages to do this binning first, so one never has to compare combinations of three galaxies, but rather, one compares combinations of bins. There are many fewer bins than galaxies, so this is an enormous computational savings.

The algorithm does this is by writing the problem using a particular set of mathematical functions, known as a ‘basis’, that is ideal for the problem. Our basis has the same symmetries as galaxy clustering and can compactly represent the information the clustering contains. Further, this set of functions, called Legendre polynomials, can be split into spherical harmonic factors.” [2,3]

Optimizations and Vectorization used in the Galactos Project

According to Friesen, “The Galactos optimization consisted of two components including single node and multi-node scaling. The multi-node scaling uses a k-d tree algorithm, which is a multi-node k-d tree with Message Passing Interface (MPI) built in. k-d trees are used to partition a data set so that data elements that are physically near each other are close to each other in memory. In Galactos, the k-d tree helps improves performance when determining which galaxy neighbors are nearby.

“The k-d tree is also important for computational load balance between nodes on the system,” Friesen adds. “The bulk of the computation in Galactos occurs within a node, so there is very little communication between nodes. If there are large load imbalances between nodes, then the algorithm only calculates as fast as the slowest node. The team worked to make the computational load as similar as possible between nodes to increase the speed of the algorithm.”

Enabling vectorization on the Intel Xeon Phi processor required sorting the galaxies, such that pairs of galaxies separated by similar distances were adjacent in memory. This enabled the algorithm to compute the geometric properties of many galaxy pairs simultaneously using vectorization, rather than computing the properties of each galaxy pair individually.

For the Galactos project, Intel optimized performance within a single Intel Xeon Phi node and across the Cray XC40 supercomputer. Intel was earlier involved in computing the 2-point correlation function with Berkeley Lab [4]. “Our optimizations to Galactos included (1) a distributed k-d tree algorithm for partitioning the galaxies and enabling fast computation of nearest neighbors to any galaxy and (2) computation of spherical harmonics around each galaxy locally. Step 2 is the biggest computational bottleneck and was vectorized over the neighbors of a given galaxy with multiple galaxies running in parallel on different threads. We used Intel developer tools optimized for Intel Xeon Phi processors,” states Narayanan Sundaram, Intel Research Scientist. In all Galactos computations, code is compiled using the Intel C++ v17.0.1 compiler with Cray MPI. The team ran the code with one MPI process per Intel Xeon Phi compute node, using 272 threads per node (four threads per physical core).

Galactos Time to Solution Test Results for the Outer Rim Dataset

Galactos testing included performance breakdown of the code running the Outer Rim dataset with 225,000 galaxies on a single node. Its single-node performance has been highly optimized for Intel Xeon Phi processors, reaching 39 percent of peak but 80 percent of the theoretical maximum performance given the algorithm’s required instruction mix, with efficient use of vectorization and the full memory hierarchy. Galactos achieves almost perfect weak and strong scaling, and achieves a sustained 5.06 PF across 9636 nodes.

Figure 3: Weak scaling of Galactos code on Cori, using the Outer Rim datasets. Courtesy of Lawrence Berkeley National Laboratory.
Figure 4: Strong scaling of Galactos code on Cori, using the Outer Rim datasets. Courtesy of Lawrence Berkeley National Laboratory.

The team ran Galactos over 9,636 available nodes of the Cori system in both mixed and double precision. (In mixed precision, the k-d tree is computed in single precision and everything else is in double precision.) The time to solution to compute the 3PCF for 2 billion galaxies in mixed precision is 982.4 sec (16.37 minutes); in pure double precision, the time to solution is 1070.6 sec (17.84 minutes).

Galactos Aids in Future Cosmology Research

Prabhat states, “As computer scientists, a lot of our achievements are surpassed in a few years because our field changes rapidly. The Galactos project has enabled a previously intractable computation to run on the Cori supercomputer in 20 minutes. When the LSST comes online, the code will be able to process massive datasets in a day or two. This project has been particularly satisfying for our team, because we have not only solved the 3-pt correlation problem for the largest dataset available in 2017, but for the next decade in astronomy. How often do you get to make that claim?”

References

[1] J. Chhugani et al., “Billion-particle SIMD-friendly two-point correlation on large-scale HPC cluster systems,” High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, Salt Lake City, UT, 2012, pp. 1-11.

[2] Z. Slepian & D.J. Eisenstein, Computing the three-point correlation function of galaxies in O(N2) time, Monthly Notices of the Royal Astronomical Society, Volume 454, Issue 4, p.4142-4158
hyperlink: https://arxiv.org/abs/1506.02040

[3] “A Practical Computational Method for the Anisotropic Redshift-Space 3-Point Correlation Function”, Zachary Slepian and Daniel J. Eisenstein, hyperlink: https://arxiv.org/abs/1709.10150, submitted to Monthly Notices of the Royal Astronomical Society.

[4] Galactos: Computing the Anisotropic 3-Point Correlation Function for 2 Billion Galaxies Brian Friesen, Md. Mostofa Ali Patwary, Brian Austin, Nadathur Satish, Zachary Slepian, Narayanan Sundaram, Deborah Bard, Daniel J Eisenstein, Jack Deslippe, Pradeep Dubey, Prabhat, Cornell University Library, 31 Aug 2017
hyperlink: https://arxiv.org/abs/1709.00086

About the Author

Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This