Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

By John Russell

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan and will begin operation in fiscal 2018 (starts in April). ABCI will use Intel’s Xeon Gold processors and Nvidia V100 GPUs and deliver 550 petaflops theoretical peak performance in half-precision floating point and 37 petaflops of double-precision peak floating point performance. The award is from Japan’s National Institute of Advanced Industrial Science and Technology (AIST).

The latest contract win means Fujitsu is now riding two CPU horses in the high stakes supercomputer race towards exascale. It is also building Japan’s post K supercomputer that is based on ARM processors. The post K machine, part of Japan’s Flagship 2020 Project, has encountered delays reportedly related to ARM development issues.

The new ABCI datacenter will be located on the Kashiwa II campus of the University of Tokyo. If this system had competed in the latest Top500 ranking of supercomputers published in June 2017, it would have taken the top position in Japan and third place globally. First reports roughly a year ago indicated the ABCI system target spec would be a 33-petaflops double-precision or 130-petaflops half-precision (see HPCwire article, Japan Plans Super-Efficient AI Supercomputer). The V100 tensor cores, which had not been announced when the plans became public, account for the much higher FP16 capability.

“The most noteworthy detail in the ABCI announcement is that it is being hailed – and configured – as a general-purpose supercomputer, not restricted to AI applications. The announcement highlights its double-precision performance, which is generally associated with scientific applications, as opposed to the single- or half-precision benchmarks that have come to be associated with deep learning,” said Addison Snell, CEO, Intersect360 Research.

“This win is also an important stepping stone for Fujitsu toward its Post-K architecture for exascale computing. Rather than SPARC processors, the ABCI system will use Intel Xeon processors with Nvidia Tesla GPU accelerators. Fujitsu can leverage this experience toward its eventual deployments that are ARM-based, with acceleration.”

The next Top500 list is due out at SC17 next month (Denver) and expectations are for shuffling at the top. In September, China’s released details of the upgrade to Tianhe-2 (MilkyWay-2) – now Tianhe-2A. It will use a proprietary accelerator (Matrix-2000), a proprietary network, and provide support for OpenMP and OpenCL. The upgrade is about 25 percent complete and expected to be fully functional by November 2017 according to a report by Jack Dongarra.

“The most significant enhancement to the system is the upgrade to the TianHe-2 nodes; the old Intel Xeon Phi Knights Corner (KNC) accelerators will be replaced with a proprietary accelerator called the Matrix-2000. In addition, the network has been enhanced, the memory increased, and the number of cabinets expanded. The completed system, when fully integrated with 4,981,760 cores and 3.4 PB of primary memory, will have a theoretical peak performance of 94.97 petaflops, which is roughly double the performance of the existing Tianhe-2 system. NUDT also developed the heterogeneous programming environment for the Matrix-20002 with support for OpenMP and OpenCL,” wrote Dongarra (Report on The TianHe-2A System).

It will be interesting to see if ABCI is stood up in time for next June’s Top500 list and where it lands. 37 petaflops (peak) should secure a top 10 or even top 5 placement but its enormous AI capability and low power will be the bigger story for many. According to today’s announcement, AIST has been planning to deploy ABCI as a global open innovation platform that will enable high speed AI processing by combining algorithms, big data and computational power. (Slide below taken from an early AIST presentation)

“As a cloud platform for AI applications offering the world’s top class machine learning processing capability, high performance computational capability, and energy efficiency, ABCI is expected to create new applications in a variety of fields. Furthermore, the system is foreseen to promote the utilization of cutting-edge AI technology by industry, including transfer of the latest cloud platform technology to the public through an open design,” said Fujitsu.

ABCI will feature a “high-performance computational system, a high-capacity storage system, and a variety of networking technology,” according to Fujitsu:

PRIMERGY CX2570 M4

“[The core of ABCI] will consist of 1,088 PRIMERGY CX2570 M4 servers, mounted in Fujitsu’s PRIMERGY CX400 M4 multi-node servers. Each server will feature the latest components, including two Intel Xeon Gold processor CPUs (a total of 2,176 CPUs) and four NVIDIA Tesla V100 GPU computing cards (a total of 4,352 GPUs), as well as Intel SSD DC P4600 series based on an NVMe standard, as local storage.

“Moreover, the 2U size chassis PRIMERGY CX400 M4 can each mount two PRIMERGY CX2570 M4 server nodes with GPU computing cards, offering high installation density. In addition, by utilizing “hot water cooling” for its servers, this system can also realize significant power savings.”

Fujitsu has been investing heavily in AI and deep learning in recent years; that includes developing of a custom AI processor, the Deep Learning Unit (See HPCwire article, Fujitsu Continues HPC, AI Push). Fujitsu’s roadmap for the DLU includes multiple generations over time: a first-gen coprocessor is set to debut in 2018, followed by a second-gen embedded host CPU. More forward-looking are potential specialized processors targeting neuromorphic or combinatorial optimization applications. There was no mention of the DLU in today’s announcement.

Fujitsu says it plans to apply its AI and HPC technology to “AIST’s high system requirement standards for both hardware and software.” The company also plans to leverage lessons learned from the ABCI project to its Human Centric AI Zinrai initiative.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This