Intel Delivers 17-Qubit Quantum Chip to European Research Partner

By Tiffany Trader

October 10, 2017

On Tuesday (Oct. 10), Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing.

Like IBM, Microsoft and Google, Intel is developing quantum computing technologies with the goal of building a commercial universal quantum computer that is some thousands of times larger than today’s prototypes. Quantum supremacy — the threshold when quantum machines outperform their classical counterparts on select problems — will be reached at roughly 50-qubits, but delivering on quantum’s promise for applications like chemistry, materials science and cryptography is going to require machines at least 1,000 times that scale.

Intel asserts that its fabrication and packaging expertise give it a leg up on its competitors in the space.

Intel’s director of quantum hardware, Jim Clarke, holds the new 17-qubit superconducting test chip. (Credit: Intel Corporation)

“We tapped into our existing knowledge of both fabrication and packaging here at Intel to build a packaged 17-qubit chip that has been optimized for the low-temperature [20 millikelvin – 250 times colder than deep space] environment,” said Jim Clarke, Intel’s director of quantum hardware.

The heart of the advance is a new architecture that improves reliability and thermal performance, and reduces radio frequency (RF) interference between qubits, said Clarke, while a scalable interconnect scheme allows for 10-100 times more signals into and out of the chip as compared to wirebonded chips. Intel emphasized its “advanced processes, materials and designs that enable [the company’s] packaging to scale for quantum integrated circuits, which are much larger than conventional silicon chips.”

The quantum supremacy horizon is likely to be reached within a year or two, but building a broadly useful quantum computer is likely to require thousands or millions of qubits (the quantum version of a classical bit). That could take a decade to achieve. “We are at mile one in a marathon,” said Clarke, “there’s a lot of learning to do, but we’re in it for the long-haul. So when we design these systems we’re not designing a system for something that probably won’t be useful today; we’re designing the whole system for something that will hit the commercial viability of a large-scale system.

“When I say system, what I mean is it’s more than a chip,” he said. “If I have a million qubit chip today I wouldn’t have the infrastructure to run it. This means the control electronics, the architecture, the algorithms and the software. At Intel, we’re working on all parts of the stack because we recognize that ultimately something that’s going to be relevant to the general population and commercial value to Intel is to build that complete system.”

Despite quantum computing’s very long rampup and recent investment and R&D spurt, the field is full of open questions. It’s far from clear what the superior qubit design will be so Intel is investigating multiple qubit types. Superconducting qubits are incorporated into its newest test chip, but the company has also been working on an alternative type called spin qubit in silicon, similar to a single electron transistor in a magnetic field. The qubit in silicon technology leverages Intel’s transistor expertise, where the superconducting qubits rely heavily on innovations in its packaging space.

With both of these systems Intel’s goal is to build a universal processor. “Both systems have advantages and disadvantages and neither system has been completely solved,” Clarke told us. “There’s still fundamental physics that have to be proven on both. We have a set of metrics that we’re trying to characterize for both types and to a certain extent, we’re hedging our bets. When one technology shows itself to be more viability than the other, we would probably pick one and run with it.”

Intel says its partnership with QuTech, begun in 2015, has enabled it to go from design and fabrication to test much more quickly. “Our quantum research has progressed to the point where our partner QuTech is simulating quantum algorithm workloads, and Intel is fabricating new qubit test chips on regular basis in our leading-edge manufacturing facilities,” said Dr. Michael Mayberry, corporate vice president and managing director of Intel Labs.

“With this test chip, we’ll focus on connecting, controlling and measuring multiple, entangled qubits towards an error correction scheme and a logical qubit,” said Professor Leo DiCarlo from QuTech. “This work will allow us to uncover new insights in quantum computing that will shape the next stage of development.”

The new test chip is about the size of a quarter in a package about the size of a half-dollar coin. In the unboxing video from QuTech’s Leo DiCarlo and Intel’s Dave Michalak, the duo report that the next step is to “test and characterize all the qubits in the device [to assess] how each performs individually and also how they all perform together when they’re entangled.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This