Student Cluster Competition Coverage New Home

By Dan Olds

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: HPCwire.

I’m Dan Olds and I’ve been in the IT industry since the mid-1990s and have been an IT industry analyst since 2001. I’ve been a huge fan of Student Cluster Competitions since I first started covering them at SC10 in New Orleans.

One of my missions in life is to publicize these competitions and show everyone in the industry how these events bolster HPC education and give the industry new blood. (Usually it’s not literally blood, but sometimes these events get a little rough…I could tell you stories….)

One big step towards that goal is bringing my cluster competition coverage over to HPCwire. There’s one overriding reason behind my decision: HPCwire cares a lot about the competitions and the role they play in developing skills and talent in the HPC community.

What IS a Student Cluster Competition Anyway?

Whether you’ve been following the competitions obsessively (holding viewing parties, sponsoring office betting pools, making action figures, etc.) or this is the first time you’ve ever heard of them, you probably have some questions.

There are rules and traditions in these competitions, just as there are in cricket, football and the Air Guitar World Championships. Understanding the rules and traditions will make these events more interesting.

A student cluster competition pits teams of university undergraduates (and even some high school kids) against each other to see which team can build, optimize and tune the fastest clustered supercomputer. The only limit on their hardware is that they can’t go over a 3,000 watt power cap.

There are currently three major student cluster competitions: the US-based SC competition held every November at the SC conference, the European-based ISC competition which is held every June, and the Asia-based Asian Student Cluster competition which is held in China during the spring.

Some rules are universal between the three competitions, for instance, the power limit of 3,000 watts. Also there’s a rule that the teams can’t get any outside help once the competition begins. All three events require competitors to run the HPCC benchmark and an independent HPL (LINPACK) run, plus a set of real-world scientific applications.

Teams receive points for system performance (usually “getting the most done” on the scientific programs) and, in some cases, the quality and precision of the results. In addition to the benchmarks and app runs, teams are grilled by HPC experts to gauge how well they understand their systems and the scientific tasks they’ve been running.

All of the major competitions feature a Highest LINPACK award, plus an Overall Champion award, along with some competition-specific additional awards. Each competition has between 12 and 20 teams competing for the prizes. The SC and ISC competitions take place live on the show floor of their respective events while the Asian competition is typically held at sites alongside the largest supercomputers in China.

The SC event is the oldest, having held the inaugural competition in 2007. ISC started their competition in 2012 and is now beginning its 6th year. The Asian event began in 2013 with their first competition in Shanghai.

While many of the rules and procedures are common between competition hosts, there are some differences:

SC competitions are grueling 48-hour marathons. The students begin their HPCC and separate LINPACK runs on Monday morning, and the results are due about 5pm that day. This usually isn’t very stressful; most teams have run these benchmarks many times and could do it in their sleep. The action really picks up Monday evening when the datasets for the scientific applications are released.

The apps and accompanying datasets are complex enough that it’s pretty much impossible for a team to complete every task. So from Monday evening until their final results are due on Wednesday afternoon, the students are pushing to get as much done as possible. Teams that can efficiently allocate processing resources have a big advantage.

ISC competitions are a set of three day-long sprints. Students run HPCC and LINPACK on the afternoon of day one but don’t receive their application datasets until the next morning. On days two and three, they’ll run through the list of workloads for that day and hand in the results later that afternoon.

The datasets usually aren’t so large that they’ll take a huge amount of time to run, meaning that students will have plenty of time to optimize the app to achieve maximum performance. However, there’s another wrinkle: the organizers spring a daily surprise application on the students. The teams don’t know what the app will be, so they can’t prepare for it; this puts a premium on team work and general HPC and science knowledge.

The ASC is like a combination of the ISC and SC competitions. Students still run HPC benchmarks (including LINPACK) on the first day, and then are given their application datasets. There are set times for when they need to turn in results for each application, on some they have a few hours, while on others they have more than a day. They typically have enough time to run every application, so the trick is to be able to optimize on the fly and get that extra bit of performance that will enable them to vault above their competitors.

Student cluster-building competitions are chock full of technical challenges, both “book learning” and practical learning, and quite a bit of fun too. I mean, who wouldn’t want to construct an HPC rig against the clock and kick an opponent in the benchmarks? Here’s what involved in the contests.

So how do these things work?

All three organizations use roughly the same process. The first step is to form a team of six undergraduate students (from any discipline) and at least one faculty advisor. Each team submits an application to the event managers, answering questions about why they want to participate, their university’s HPC and computer science curriculum, team skills, etc. A few weeks later, the selection committee decides which teams make the cut and which need to try again next year.

The groups who get the nod have several months of work ahead. They’ll need to find a sponsor (usually a hardware vendor) and make sure they have their budgetary bases covered. This process is a bit easier in the ASC since hardware vendor Inspur provides all of the gear for the student teams.

But in the other competitions, sponsors usually provide the latest and greatest gear, some advice, and some financial support for travel and other logistical costs. Incidentally, getting a sponsor isn’t all that difficult. Conference organizers (and other well-wishers like me) can help teams and vendors connect.

The rest of the time prior to the competition is spent designing, configuring, testing, tuning the clusters, and learning as much as possible about the applications they’ll be facing. Then the teams take these systems to the event and compete against each another in a live benchmark face-off.

When it comes to hardware, the sky’s the limit. Over the past few years, we’ve seen traditional CPU-only systems supplanted by hybrid CPU and GPU-powered clusters. We’ve also seen some ambitious teams experiment with cooling, using either direct connect liquid blocks or even full liquid immersion.

There’s no limit on how much gear, or what type of hardware, teams can bring to the competition. But there’s a catch: whatever they run can’t consume more than 3,000 watts at whatever volts and amps are customary in that location.

This  power limit applies to all of their compute nodes, file servers, switches, storage and everything else with the exception of PCs managing the system. There aren’t any loopholes to exploit, either – the entire system must remain powered on and operational during the entire three-day competition. This means that students can’t use hibernation or suspension modes to power down parts of the cluster to reduce electric load. Reboots are allowed only if the system fails or hangs up. Going over the limit is a bad thing and will result in a warning to the team and possible point deduction.

On the software side, teams can use any operating system, clustering or management software they desire, as long as the configuration will run the required workloads. The vast majority of teams run some flavor of Linux, although there were Russian teams in 2010 and 2011 who competed with a Microsoft software stack, and they won highest LINPACK at SC11 in (appropriately enough) Seattle.

Compelling competition

Speaking for myself (and probably untold millions of maniacal fans worldwide), these competitions are highly compelling affairs. The one thing I hear time and time again from students is, “I learned so much from this.” They’re not just referring to what they’ve learned about HPC systems and clusters, but what they’ve learned about science and research. And they’re so eager and enthusiastic when talking about this new knowledge and what they can do with it – it’s contagious.

For some participants, the SCC is a life-changing event. It’s prompted some students to embrace or change their career plans – sometimes radically. These events have led to internships and even full-time career-track jobs.

For many of the undergraduates, this is their first exposure to the world of supercomputing and the careers available in industry or research. Watching them begin to realize the range of opportunities open to them is very gratifying; it even penetrates a few layers of my typically cynical outlook on the world.

The schools sending the teams also realize great value from the contests. Several universities have used the SCC as a springboard to build a more robust computer science and HPC curriculums – sometimes building classes around the competition to help prepare their teams. The contests also give the schools an opportunity to highlight student achievement, regardless of whether or not they win.

Just being chosen to compete is an achievement. As these competitions receive more attention, the number of schools applying for a slot has increased. The most recent competition in China saw more than 300 teams from around the world vie for finals slots.

With all that said, there’s another reason I find these competitions so compelling: they’re just plain fun. The kids are all friendly and very personable, even when there’s a language barrier. They’re eager and full of energy. They definitely want to win, but it’s a good-spirited brand of competition. Almost every year we’ve seen examples of teams donating hardware to teams in need when there are shipping problems or when something breaks.

It’s that spirit, coupled with their eagerness to learn and their obvious enjoyment which really defines these events. And it’s quite a combination.

About the Author

Dan is one of the lead analysts at OrionX, building on his 15 years of experience as founder and principal analyst at Gabriel Consulting Group (GCG), a boutique IT research and consulting firm whose activities are now part of the OrionX offerings.

In addition to server, storage, and network technologies, Dan closely follows the Big Data, Cloud, and HPC markets. He is the go-to person for the coverage and analysis of the supercomputing industry’s Student Cluster Challenge.

Dan began his career at Sequent Computer, an early pioneer in highly scalable business systems. He was the inaugural lead for the successful server consolidation program at Sun Microsystems, and was at IBM in the strategically important mainframe and Power systems groups. He is a graduate of the University of Chicago Booth School of Business with a focus on finance and marketing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire