IBM Demonstrates In-memory Computing with 1M PCM Devices

By John Russell

October 30, 2017

Last week IBM reported successfully using one million phase change memory (PCM) devices to implement and demonstrate an unsupervised learning algorithm running in memory. It’s another interesting and potentially important step in the quickening scramble to develop in-memory computing techniques to overcome the memory-to-processor data transfer bottlenecks that are inherent in von Neumann architecture. IBM promises big gains from PCM technology.

“When compared to state-of-the-art classical computers, this prototype technology is expected to yield 200x improvements in both speed and energy efficiency, making it highly suitable for enabling ultra-dense, low-power, and massively-parallel computing systems for applications in AI,” says IBM researcher Abu Sebastian in account of the work posted on the IBM Research Zurich website.

In this particular research, IBM demonstrated the ability to identify “temporal correlations in unknown data streams.” One of the examples, perhaps chosen with tongue-in-cheek, was use of the technique to detect and reproduce an image of computer pioneer Alan Turing. The full research is presented in a paper, ‘Temporal correlation detection using computational phase-change memory’, published in Nature Communications last week.

Evangelos Eleftheriou, an IBM Fellow and co-author of the paper, is quoted in the blog, “This is an important step forward in our research of the physics of AI, which explores new hardware materials, devices and architectures. As the CMOS scaling laws break down because of technological limits, a radical departure from the processor-memory dichotomy is needed to circumvent the limitations of today’s computers. Given the simplicity, high speed and low energy of our in-memory computing approach, it’s remarkable that our results are so similar to our benchmark classical approach run on a von Neumann computer.”

IBM used PCM devices based on germanium antimony telluride alloy stacked and sandwiched between two electrodes. The extent of its crystalline versus amorphous structure (its phase) between the electrodes is changed by pulsing current through the device which heats up the material causing the phase change; this in turn controls its conductance levels. (For background see HPCwire article, IBM Phase Change Device Shows Promise for Emerging AI Apps)

Shown below is a schematic of the IBM algorithm.

To demonstrate the technology, the authors chose two time-based examples and compared their results with traditional machine-learning methods such as k-means clustering:

  • Simulated Data: one million binary (0 or 1) random processes organized on a 2D grid based on a 1000 x 1000 pixel, black and white, profile drawing of famed British mathematician Alan Turing. The IBM scientists then made the pixels blink on and off with the same rate, but the black pixels turned on and off in a weakly correlated manner. This means that when a black pixel blinks, there is a slightly higher probability that another black pixel will also blink. The random processes were assigned to a million PCM devices, and a simple learning algorithm was implemented. With each blink, the PCM array learned, and the PCM devices corresponding to the correlated processes went to a high conductance state. In this way, the conductance map of the PCM devices recreates the drawing of Alan Turing.
  • Real-World Data: actual rainfall data, collected over a period of six months from 270 weather stations across the USA in one hour intervals. If rained within the hour, it was labelled “1” and if it didn’t “0”. Classical k-means clustering and the in-memory computing approach agreed on the classification of 245 out of the 270 weather stations. In-memory computing classified 12 stations as uncorrelated that had been marked correlated by the k-means clustering approach. Similarly, the in-memory computing approach classified 13 stations as correlated that had been marked uncorrelated by k-means clustering.

Shown below is figure 5 from the paper with further details of the examples (click image to enlarge):

 

Experimental results. a A million processes are mapped to the pixels of a 1000 × 1000 pixel black-and-white sketch of Alan Turing. The pixels turn on and off in accordance with the instantaneous binary values of the processes. b Evolution of device conductance over time, showing that the devices corresponding to the correlated processes go to a high conductance state. c The distribution of the device conductance shows that the algorithm is able to pick out most of the correlated processes. d Generation of a binary stochastic process based on the rainfall data from 270 weather stations across the USA. e The uncentered covariance matrix reveals several small correlated groups, along with a predominant correlated group. f The map of the device conductance levels after the experiment shows that the devices corresponding to the predominant correlated group have achieved a higher conductance value

 

“Memory has so far been viewed as a place where we merely store information. But in this work, we conclusively show how we can exploit the physics of these memory devices to also perform a rather high-level computational primitive. The result of the computation is also stored in the memory devices, and in this sense the concept is loosely inspired by how the brain computes,” according to Sebastian, who is an exploratory memory and cognitive technologies scientist, IBM Research, and lead author of the paper. He also leads a European Research Council funded project on this topic

Here’s an excerpt from the paper and link to a short video on the work:

“We show how the crystallization dynamics of PCM devices can be exploited to detect statistical correlations between event-based data streams. This can be applied in various fields such as the Internet of Things (IoT), life sciences, networking, social networks, and large scientific experiments. For example, one could generate an event-based data stream based on the presence or absence of a specific word in a collection of tweets. Real-time processing of event-based data streams from dynamic vision sensors is another promising application area. One can also view correlation detection as a key constituent of unsupervised learning where one of the objectives is to find correlated clusters in data streams.”

Link to paper: https://www.nature.com/articles/s41467-017-01481-9

Link to article: https://www.ibm.com/blogs/research/2017/10/ibm-scientists-demonstrate-memory-computing-1-million-devices-applications-ai/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitment to holistic sustainability as well as launching a managed Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. Well, say hello to Pluribus, an upgraded bot, which has now be Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. We Read more…

By John Russell

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This