SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

By John Russell

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That was already a big number for the young open source project. Today, the number is closer to one million per day says Gregory Kurtzer, former HPC Systems Architect for Lawrence Berkeley National, the original driving force behind Singularity, and now the CEO of SingularityWare LCC.

It’s increasingly clear that the appetite for containers in scientific computing is every bit as strong as it is in enterprise computing where several technologies are jostling but Docker remains firmly the king. Containers, of course, aren’t new. (I’ve probably written exactly those words before) Like virtual machines (VM) before them, containers embody the idea of encapsulating compute environments to enhance application and workflow portability (and reproducibility) across varying compute infrastructures. Gather what you need into a single ‘box’, wrap it with enough standardized hooks to play nicely on other machines running Singularity, and game on. Build it once. Use (and share) it many times.

This separation of the software environment (and all of its dependencies) from the systems it runs on is an important paradigm change, says Kurtzer, especially in HPC where tight coupling of software to the specific underlying hardware has long been the guiding principle for squeezing out maximum performance. It still is. But for many jobs squeezing out optimum performance is less important than achieving portability and consistency of adequate performance.

HPCwire recently talked with Kurtzer about Singularity’s rapid growth, its technology roadmap, its staffing challenge, and Kurtzer’s plans to create a little excitement for Singularity at SC17. He is chary of spending on an SC booth given that SC newcomers often land in far corners with limited traffic. Instead Kurtzer is sponsoring a scavenger hunt involving many booths of Singularity stakeholders (preliminary list of participating booths at the end of the article). We’ll see how that works out.

In the meantime there’s lots to talk about. Singularity 2.4 was released last month with 3.0 expected early in 2018. (The Singularity FAQ page provides a good overview of features.) Importantly support from the big and small government and academic computing centers has been significant. Many of the familiar supercomputing centers, for example OCLF, TACC, NASA Ames, SDSC, Sandia, NIH, and LBNL, are using Singularity in production. Though not comprehensive the Singularity registry (voluntary) provides snapshot of Singularity user base.

It’s also noteworthy that now that Singularity has made substantial inroads into the traditional HPC community, Kurtzer is planning expansion into the enterprise computing arena. That seems in keeping with many traditional HPC technology suppliers who have pivoted to the enterprise in search of growth. What follows is a portion of our conversation plus a few slides from a recent presentation by Kurtzer to a national lab.

HPCwire: Seems like the use of Singularity is growing quickly, even in the relatively short time since we talked last (see, Singularity HPC Container Technology Moves Out of the Lab). Besides adoption what been happening with Singularity itself.

Gregory Kurtzer, SingularityWare CEO

Greg Kurtzer: We’ve been focusing a lot on the 2.4 release which I am hoping will actually be out maybe even tonight (it’s now out). There are a couple important new features in 2.4. The biggest is something we are calling instance support. Basically it’s the ability to run persistent namespaces such that you can come back and join it after the fact. It’s almost like a virtual machine; you can start up a Singularity container, run your jobs and everything you want in it, and when you want to leave it and exit, you can leave and exit and then you can come back to it later and it is still running.

The other big change is we have moved to compressed, immutable images. By default, previously everything was embedded in a read write format that emulates a file system. Now what we are doing is something that will be a little bit different because it is much more optimal in terms of space consumption on your hard drive because it is always compressed and actually even runs compressed. You can execute and use a compressed container without ever having to un-compress it.

Also, we now have ability to do things like persistent overlays so you can capture all the deltas in a container and then use that as a data container, a new concept we are playing with.

HPCwire: I understand that 3.0 is actually not far off. Can you give a preview? What’s on the technology roadmap.

Kurtzer: I can give you a little bit of a heads ups on what is coming in future versions. We’re coining a new term, or at least I think we are as I have not heard it used before us, called data containers which is really along the line of encapsulation of data. Currently we have encapsulations of environments, operating environments, etc. but there are also really good reasons to encapsulate your data. We are going to have additional abilities with security to further limit security exposure to host systems. That’s a big one. A lot of supercomputing centers won’t even have to make Singularity “setuid” root; they’ll basically just use additional Linux capabilities for increasing security privileges in order to run containers.

The big change we are going for [in 3.0] is introducing something called the Singularity image format, SIF for short. We are changing the major version name from 2.x to 3.x because we are changing the image format. Every time we have changed the image format we have changed the major number. SIF is basically a single file image because the whole context of Singularity is a single image; that’s really the main point of what a singularity container is, differentiating itself from other container systems or at least that is one of the main ones. We are spending a lot of effort defining what that single image looks like.

This SIF file will have the ability to have multiple data regions within the file. In a manner of speaking you can have multiple containers or multiple container layers, within a single file. Let’s say it’s running CentOS with MySQL and some sort of genomics application that queries the SQL database and then can do other things. You can have that in the base image and that base is immutable, it cannot change. Then when we have another data region which is writeable where we capture all of the modifications to that image in the writable layer of the SIF file. This is important because we can checksum and sign the multiple data regions independently while still allowing the data within the container to change or evolve.

Also we are bringing forth the idea of cryptographically signing of containers which is actually huge because the other container systems that are out there, even in enterprise, don’t have the ability to cryptographicly sign a container in its runtime form. Thanks to the SIF format we can have sections of that file which are signed and other sections which are using overlays. To give a use case, let’s stick with the genomics example; let’s say you have a database server running and you are querying and updating that genomics database and as time goes on that database is going to grow. If you think about this in a traditional way, that would break the signing, it would break the validation of your container. You wouldn’t be able to verify it anymore because you just changed your image. But because it is based on an immutable base and the data in that base layer can be signed independently within the image, we have the ability to have containers that evolve with time without breaking signatures.

HPCwire: What else is on the docket for 3.0 or beyond?

Kurtzer: The SIF image format includes image signing and image verification/validation, and we are also additional support for network namespaces. Right now we have network namespace isolation, but this new set of features will give us the ability for a container to come up as a virtual IP address. That obviously will require a privileged user; that can’t be done with a regular user because it will be changing network configurations. We’re also looking into CGroup support (control groups, Linux), and virtual booting of instances. The idea of virtual booting of those instances would basically allow you to run a Singularity container just like a VM. We have already done prototypes of this and it only takes it a fraction of a second to boot so it is very fast.

Container performance monitoring is also on the roadmap but I am not sure if we are going to get that into 3.0. It’s basically the ability to do performance profiling through a container. Our goal, really, is to make Singularity a feature-full, science enabling platform.

HPCwire: Maybe this is a good spot to review the Singularity user base. How is support from the major science computing centers? What does a typical user look like? Is it mostly the “long tail of science” type of users and organizations?

Kurtzer: Well, Titan (OCLF supercomputer center at Oak Ridge National Lab) among several other top 10 supercomputers on the Top500 are running Singularity. We have had very strong support from a wide range of major computing centers including older and new machines. As for who the user is, we have people that are not only on the long tail of science but also people on the cutting edge of their computational domain. This is because Singularity changes the software distribution and archival paradigm as the container can fit within a researcher’s existing data management solutions.

Singularity is already running on most of the large centers; what I want to focus on now is enabling the independent scientists as much as we can and to focus on this notion of enterprise HPC. I’ve been contacted by multiple vendors, tier 1 and tier 2, on something that they are calling “Enterprise HPC.” It’s basically enterprise sites who have little or no expertise in HPC but who are starting to run HPC-like workloads (machine learning and compute driven analytics). Singularity is being targeted by many organizations as the vector for basically dealing with these applications and these workloads because these enterprises don’t have the HPC expertise to be building or maintaining all of these workflows. The vendors are talking about building workflows – e.g., machine learning or analytics workflows – and saying ‘we want to distribute those as singularity containers.’ So singularity is going to be really big, I think, in this kind of hybrid mix between enterprise and HPC.

Many of these enterprise HPC jobs are not the tightly-coupled highly parallelized jobs we’ve come to see as commonplace on HPC. When someone says HPC it means something really specific to traditional HPC folks; it’s tightly coupled, we’ve got some sort of low latency interconnect, parallel file systems, designed to run high performance, highly scalable custom applications. But today, this has changed. HPC has come to mean pretty much any form of scientific computing and as a result, its breadth has grown in terms of what kind of applications we need to support. The traditional HPC architecture is not as applicable to a general wide use case scenario.

Singularity has lowered the barrier of entry to HPC considerably. People can create their own workflows, can leverage Docker, can and leverage other people’s containers via singularity hub to recapitulate people’s workflows and then further expand on this basis.

Even people who are doing more traditional HPC type jobs that are tightly coupled and whatnot are looking into containers to escape some of the dependency issues and some of the difficulties in creating those workflows and archive and/or distribute their software stacks.

HPCwire: Surely not all HPC applications are easily containerized.

Kurtzer: True. Fluent (CFD simulation, ANSYS) for example is extremely difficult to containerize. This is because to do a multi-node parallel processing job Fluent wants to run the MPI but the host resource manager should be controlling the MPI. We end up in this chicken and egg problem as the MPI within the container actually wants to be the MPI outside the container. Having vendor buy-in and support in how we properly containerize these applications is critical (hint, hint ANSYS, let’s talk.).

HPCwire: Let’s change gears and talk about the Singularity organization. How’s it going?

Kurtzer: It is fantastic. I’ve created a few companies previously, and several open source projects, including CentOS Linux, and the growth and commercial interest in Singularity has surpassed all of them! At this point, I am building my core team. I am looking for experienced developers, great minds, and people who want to change the face of computing. It is an extremely surreal experience, and I am looking for the most fantastic of people to join in this project. Funding is available so it just comes down to finding the right people.

To that point, if there are any readers out there interested in being part of this endeavor reach out to me, and let’s talk.

Preliminary List of Organizations Supporting Singularity at Their Booths

  1. Bright Computing
  2. Globus
  3. HPCwire
  4. MVAPICH2/Ohio State University
  5. Penguin Computing
  6. RedBarn Computing
  7. Rutgers
  8. SSERCA (Sunshine State Educational and Research Computing Alliance)
  9. Texas Tech University Booth
  10. University of Michigan / Michigan State

Slide Source: Kurtzer

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This