SC17 Preview: The National Strategic Computing Initiative

By Alex R. Larzelere

November 2, 2017

In Washington, the conventional wisdom is that an initiative started by one presidential administration will not survive into a new one. This seemed to be particularly true with the transition of the Obama administration into the Trump administration. However, an exception to this unwritten rule may be the case of an initiative to support exascale, data analytics, “post-Moore’s Law” computing and the HPC ecosystem. The jury is still out, but the signs are starting to look good.

In the summer of 2014, during the tail-end of the Obama administration, a team at the White House’s Office of Science and Technology Policy (OSTP) started to formulate what would become known as the National Strategic Computing Initiative (NSCI). Over the next year, the NSCI was defined and refined through an interagency process and interactions with computer companies and industry users of high performance computing. Although the initiative was formally started by President Obama on July 29, 2015, support by the US federal government for advanced computing is not new, nor is the concept of multi-agency national strategic computing programs. For example, precedents include the Strategic Computing Initiative of the 1980s, the High-Performance Computing Act of 1991, and the High Productivity Computing Systems program of the 2000s. Information concerning NSCI can be found at https://www.nitrd.gov/nsci/.

NSCI recognizes the value of US investments in cutting-edge, high-performance computing for national security, economic security, and scientific discovery. It directs the administration to take an “whole of government” approach to continuing and expanding those activities. The initiative puts the Department of Defense, the Department of Energy and the National Science Foundation into leadership roles to coordinate those efforts. The initiative also identifies different agencies to conduct foundational R&D and be involved with deployment and implementation. The “whole of government” approach is quite important to collect and coordinate the resources (i.e. funding) to achieve the NSCI goals.

There are five strategic objectives for this initiative. The first is to accelerate the delivery of a “capable exascale computing system” (defined as the integration of hardware and software capability to deliver approximately 100 times the performance of current 10-petaflop systems across a range of applications representing government needs). The second seeks to increase the coherence between traditional modeling and simulation and large data analytics. The third objective is to establish, over the next 15 years, a viable path forward for advanced computing in the “post Moore’s Law era.” The fourth objective seeks to increase the capacity and capability of the entire HPC ecosystem, both human and technical. Finally, the fifth NSCI objective is to implement enduring public-private collaborations to ensure that the benefits of the initiative are shared between the government and the industrial and academic sectors of the economy.

An NSCI Joint Program Office (JPO) has been established with representatives from the lead agencies (DOD, DOE, and NSF). There was also a decision to have the Networking and Information Technology Research and Development (NITRD)’s National Coordination Office (NCO) to act as the communications arm for the initiative. Also, an Executive Council led by the directors of OSTP and the OMB (Office of Management and Budget) has been established and in July of 2016 published a Strategic Plan for the initiative.

The bad news is that there were not any formally designated funds for NSCI identified in the President Trump’s Fiscal Year 2018 request (although the initiative was mentioned in several places). In the federal government that could be the “kiss of death.” An initiative without funding often withers away and dies. The encouraging thing about the NSCI is that it may be okay that there is no specifically designated funding. The reason for this is that there other currently funded activities at the lead agencies that already align with the goals of the NSCI. Therefore, the only thing needed for “NSCI implementation” is for these activities to work in a coordinated way and that is already happening, to some degree, through the JPO. The synergy of the currently funded NSCI relevant activities provides additional hope that the initiative will survive the transition.

Other pieces of good news include the fact that the staff at the White House’s OSTP is growing and we understand has been briefed on the initiative. We also heard that the White House’s Deputy Chief Technology Officer, Michael Kratsios, has been briefed on NSCI. Another very good sign was that on August 17th, Mike Mulvaney of OMB and Michael Kratsios issued the Administration’s R&D budget priorities. One of those, under the category of Military Superiority, was the call for the U.S. to maintain its leadership in future computing capabilities. Also, under the category of American Prosperity, the budget priorities expressed an interest in R&D in machine learning and quantum computing. Finally, there was direction given for the coordination of new R&D efforts to avoid duplication with existing efforts, which is what the NSCI JPO is already doing.

More specific information about the status of the NSCI will be available at the upcoming Birds of a Feather session at the SC17 conference (5:15 pm, Wed 11/15, Room 601). There, current members of the JPO (Mark Sims of DOD, William Harrod of DOE, and Irene Qualters of NSF) will be able to provide the latest and greatest about the initiative.

For the initiative to survive, the new administration will need to take ownership. Sometimes, with an administration shift, this may involve adjusting its scope. However, there has been previous initiatives that successfully made the administration leap intact (an example is the DOE Accelerated Strategic Computing Initiative (ASCI)). These tend to be initiatives that have a clear and compelling reason to exist and a sound organization that provides confidence that they will succeed.

Things continue to look good for funding the exascale program in the Trump administration. Also, the growth of large scale data analytics across the spectrum of government, industry, and academia probably means that there is a good chance that NSCI will survive the transition.

About the Author

Alex Larzelere is a senior fellow at the U.S. Council on Competitiveness, the president of Larzelere & Associates Consulting and HPCwire’s policy editor. He is currently a technologist, speaker and author on a number of disruptive technologies that include: advanced modeling and simulation; high performance computing; artificial intelligence; the Internet of Things; and additive manufacturing. Alex’s career has included time in federal service (working closely with DOE national labs), private industry, and as founder of a small business. Throughout that time, he led programs that implemented the use of cutting edge advanced computing technologies to enable high resolution, multi-physics simulations of complex physical systems. Alex is the author of “Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI).”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire