Trends in HPC and Machine Learning Drive Evolution of Cooling Solutions

November 6, 2017

As seen at ISC17 and will be seen at SC17, the application of HPC in finance, logistics, manufacturing, big science and oil & gas is continuing to expand into areas of traditional enterprise computing often tied to the exploitation of Big Data. It is clear that all of these segments are using (or planning to use) machine learning and AI resulting in architectures that is very HPC-like.

The physical implementation of these systems requires a greater focus on heat capture and rejection due to the wattage trends in CPUs, GPUs and emerging neural chips required to meet accelerating computational demands in HPC-style clusters. The resulting heat and its impact on node, rack and cluster heat density is seen with Intel’s Knight’s Landing and Knight’s Mill, Nividia’s P100 and the Platinum versions of the latest Intel Skylake processors.

Wattages are now sufficiently high that to cool nodes containing these highest performance chips leaves one with little choice other than liquid cooling to maintain reasonable rack densities. In sustained compute sessions, there must be no throttling or down-clocking of the compute resources. If not addressed at the node level with liquid cooling, floor space build-outs or data center expansions become necessary. Even more importantly, reducing node and rack densities can drive an increase in interconnect distances between all types of cluster nodes.

These developments are a direct result of a wattage inflection and not simply an extension of trends seen previously. Depending on the approach taken, machine learning and AI exacerbate this trend. Heat and wattage issues seen with GPUs during the training or learning phase of an AI application (especially if used in a deep learning/ neural network approach) are now well known. And in some cases, these issues continue into application rollout if GPUs are applied to that as well.

Even if the architecture uses quasi-GPUs like Knight’s Mill in the training phase (via “basic” machine learning or deep learning followed by a handoff to scale-out CPUs like Skylake for actual usage) the issues of wattage/density/cooling remains. And it isn’t getting any better.

With distributed cooling’s ability to address site needs in a variety of heat rejection scenarios, it can be argued that the compute-wattage-inflection-point is a major driver in the accelerating global adoption of Asetek liquid cooling at HPC sites and by the OEMs that serve them.  And as will be shown at SC17, quite of few of the nodes OEMs are showing with liquid cooling are targeted at machine learning.

Given the variety of clusters (especially with the entrance of AI), the adaptability of the cooling approach becomes quite important. Asetek distributed pumping architecture is based on low pressure, redundant pumps and closed loop liquid cooling within each server node. This allows for a high level of flexibility in heat capture and heat rejection.

Asetek ServerLSL™ is a server-level liquid assisted air cooling (LAAC) solution. It can be used as a transitional stage in the introduction of liquid cooling or as a tool to enable the immediate incorporation of the highest performance computing nodes into the data center. ServerLSL allows the site to leverage existing HVAC, CRAC and CRAH units with no changes to data center cooling. ServerLSL replaces less efficient air coolers in the servers with redundant coolers (cold plate/pumps) and exhausts 100% of this hot air into the data center via heat exchangers (HEXs) in each server. This enables high wattage server nodes to have 1U form factors and maintain high cluster rack densities. At a site level, the heat is handled by existing CRACs and chillers with no changes to the infrastructure. With ServerLSL, liquid cooled nodes can be mixed in racks with traditional air-cooled nodes.

Asetek ServerLSL™ Cooling

While ServerLSL isolates the system within each server, Asetek RackCDU systems are rack-level focused, enabling a much greater impact on cooling costs of the datacenter overall. RackCDU systems leverage the same pumps and coolers used with ServerLSL nodes. RackCDU is in use by all of the current sites in the TOP500 using Asetek liquid cooling.

Asetek RackCDU provides the answer both at the node level and for the facility overall. As with ServerLSL, RackCDU D2C (Direct-to-Chip) utilizes redundant pumps/cold plates atop server CPUs & GPUs (and optionally other high wattage components like memory).  But the collected heat is move it via a sealed liquid path to heat exchangers in the RackCDU for transfer into facilities water. RackCDU D2C captures between 60% and 80% of server heat into liquid, reducing data center cooling costs by over 50% and allowing 2.5x-5x increases in data center server density.

The remaining heat in the data center air is removed by existing HVAC systems in this hybrid liquid/air approach. When there is unused cooling capacity available, data centers may choose to cool facilities water coming from the RackCDU with existing CRAC and cooling towers.

The high level of flexibility in addressing cooling at the server, rack, cluster and site levels provided by Asetek distributed pumping is lacking in approaches that utilize centralized pumping. Asetek’s approach continues to deliver flexibility in the areas of heat capture, coolant distribution and heat rejection.

At SC17, Asetek will also have on display a new cooling technology in which servers share a rack mounted HEX. The servers utilizing this shared HEX approach allow them to continue to be used if the site later moves to RackCDU.

To learn more about Asetek liquid cooling, stop by booth 1625 at SC17 in Denver.

Appointments for in-depth discussions about Asetek’s data center liquid cooling solutions at SC17 may be scheduled by sending an email to [email protected].

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire