Deep Learning for Science: A Q&A with NERSC’s Prabhat

By Kathy Kincade

November 7, 2017

Deep learning is enjoying unprecedented success in a variety of commercial applications, but it is also beginning to find its footing in science. Just a decade ago, few practitioners could have predicted that deep learning-powered systems would surpass human-level performance in computer vision and speech recognition tasks.

These tools are now poised to help scientists contend with some of the most challenging data analytics problems in a number of domains. For example, extreme weather events pose great potential risk on ecosystem, infrastructure and human health. Analyzing extreme weather data from satellites and weather stations and characterizing changes in extremes in simulations is an important task. Similarly, upcoming astronomical sky surveys will obtain measurements of tens of billions of galaxies, enabling precision measurements of the parameters that describe the nature of dark energy. But in each case, analyzing the mountains of resulting data poses a daunting challenge.

Prabhat, NERSC

A growing number of scientists are already employing HPC systems for data analytics, and many are now beginning to apply deep learning and other types of machine learning to their large datasets. Toward this end, in 2016 the U.S. Department of Energy’s National Energy Research Scientific Computing Center (NERSC) expanded its support for deep learning and began forming hands-on collaborations with scientists and industry. NERSC users from science domains such as geosciences, high energy physics, earth systems modeling, fusion and astrophysics are now working with NERSC staff, software tools and services to explore how deep learning can improve their ability to solve challenging science problems.

In this Q&A with Prabhat, who leads the Data and Analytics Services Group at NERSC, he talks about the history of deep learning and machine learning and the unique challenges of applying these data analytics tools to science. Prabhat is also an author on two related technical papers being presented at SC17, “Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data” and “Galactos: Computing the 3-pt Anisotropic Correlation for 2 Billion Galaxies,” and is conducting two deep learning roundtables in the DOE Booth (#613) at SC17. He is also giving a plenary talk on deep learning for science on Sunday, November 12 at the Intel HPC Developer Conference held in conjunction with SC17.

How do you define deep learning, and how does it differ from machine learning?

At the Department of Energy, we tackle inference problems across numerous domains. Given a noisy observation, you would like to infer properties of the object of interest. The discipline of statistics is ideally suited to solve inference problems. The discipline of Machine Learning lies at the intersection of statistics and computer science, wherein core statistical methods were employed by computer scientists to solve applied problems in computer vision and speech recognition. Machine learning has been around for more than 40 years, and there have been a number of different techniques that have fallen in and out of favor: linear regression, k-means, support vector machines and random forests. Neural networks have always been part of machine learning – they were developed at MIT starting in the 1960s – there was the major development of the back-propagation algorithm in the mid-1980s, but they never really picked up until 2012. That is when the new flavor of neural networks – that is, deep learning – really gained prominence and finally started working. So the way I think of deep learning is as a subset of machine learning, which in turn is closely related to the field of statistics, and all of them have to do with solving inference problems of one kind or another.

What technological changes occurred that enabled deep learning to finally start working?

Three important trends have happened over the last 20 years or so. First, thanks to the internet, “big Data,” or large archives of labeled and unlabeled datasets, has become readily accessible. Second, thanks to Moore’s Law, computers have become extremely powerful. A laptop featuring a GPU and a CPU is more capable than supercomputers from previous decades. These two trends were prerequisites for enabling the third wave of modern neural nets, deep learning, to take off. The basic machinery and algorithms have been in existence for three decades, but it is only the unique confluence of large datasets and massive computational horsepower that enabled us to explore the expressive capabilities of Deep Networks.

What are some of the leading types of deep learning methods used today for scientific applications?

As we’ve gone about systematically exploring the application of deep learning to scientific problems over the last four years, what we have found is that there are two dominant architectures that are relevant to science problems. The first is called the convolutional network. This architecture is widely applicable because a lot of the data that we obtain from experimental and observational sources (telescopes and microscopes) and simulations – tend to be in the form of a grid or an image. Similar to commodity cameras, we have 2D images, but we also typically deal with 3D, 4D and multi-channel images. Supervised pattern classification is a common task shared across commercial and scientific use cases; applications include face detection, face recognition, object detection and object classification.

The second approach is more sophisticated and has to do with the recurrent neural network: the long short-term memory (LSTM) architecture. In commercial applications, LSTMs are used for translating speech by learning the sequence-to-sequence mapping between one language and another. In our science cases, we also have sequence-to-sequence mapping problems, such as gene sequencing, for example, or in earth systems modeling, where you are tracking storms in space and time. There are also problems in neuroscience that take recordings from the brain and use LSTM to predict speech. So broadly those two flavors of architectures – convolutional networks and LSTMs – are the dominant deep learning methodologies for science today.

In recent years, we have also explored auto-encoder architectures, which can be used for unsupervised clustering of datasets. We have had some success in applying such methods for analysis of galaxy images in astronomy, and Data Bay sensor data for neutrino discovery. The latest trend in deep learning is the generative adversarial network (GAN). This architecture can be used for creating synthetic data. You can feed in examples from a certain domain, say cosmology images or Large Hadron Collider (LHC) images, and the network will essentially learn a process that can explain these images. Then you can ask that same network to produce more synthetic data that is consistent with other images it has seen. We have empirical evidence that you can use GANs to produce synthetic cosmology or synthetic LHC data without resorting to expensive computational simulations.

What is driving NERSC’s growing deep learning efforts, and how did you come to lead these efforts?

I have a long-standing interest in image processing and computer vision. During my undergrad at IIT Delhi, and grad studies at Brown, I was intrigued by object recognition problems, which seemed to be fairly hard to solve. There was incremental progress in the field through the 1990s and 2000s, and then suddenly in 2012 and 2013 you see this breakthrough performance in solving real problems on real datasets. At that point, the MANTISSA collaboration – a research project originally begun when I was part of Berkeley Lab’s Computational Research Division – was exploring similar pattern detection problems, and it was natural for us to explore whether deep learning could be applied to science problems. We spent the next three to four years exploring applications in earth systems modeling, neuroscience, astronomy and high energy physics.

When a new method/technology comes along, one has to make a judgment call on how long you want to wait before investing time and energy in exploring the possibilities. I think the DAS group at NERSC was one of the early adopters. We recognized the importance of this technique and demonstrated that it could work for science. In the experimental and observational data community, there are a lot of examples of domain scientists who have been struggling with pattern recognition problems for a long time. And now the broader science community is waking up to the possibilities of machine learning to help them solve these problems.

What is NERSC’s current strategy for bringing deep learning capabilities to its users?

Since NERSC is a DOE Office of Science national user facility, we listen to our users, track their emerging requirements and respond to their needs. Our users are telling us that they would like to explore machine learning/deep learning and see what it can do for them. We currently have about 70 users who are actively using deep learning software at NERSC, and we want to make sure that our software, hardware, policies and documentation are all up to speed. Over the past two years, we have worked with the vendor community and identified a few popular deep learning frameworks (TensorFlow, Caffe, Theano and Torch) and have deployed them on Cori. In addition to making the software available, we have documentation and case studies in place. We also have in-depth collaborations in about a dozen areas where NERSC staff, mostly from the DAS group, have worked with scientists to help them explore the application of deep learning. And we are forming strategic relationships with commercial vendors and other research partners in the community to explore the frontier of deep learning for science.

Do certain areas of scientific research lend themselves more than others to applying deep learning?

Right now our success stories span research sponsored by several DOE Office of Science program offices, including BER, HEP and NP. In earth systems modeling, we have shown that convolutional architectures can extract extreme weather patterns in large simulations datasets. In cosmology, we have shown that CNNs can predict cosmological constants, and GANs can be potentially used to supplement existing cosmology simulations.  In astronomy, the Celeste project has effectively used auto-encoders for modeling galaxy shapes. In high energy physics, we are using convolutional architectures for discriminating between different models of particle physics, exploring LSTM architectures for particle tracking. We’ve also shown that deep learning can be used for clustering and classifying various event types at the Daya Bay experiment.

So the big takeaway here is that for the tasks involving pattern classification, regression and creating fast simulators, deep learning seems to do a good job – IF you can find training data. That’s the big catch – if you have labeled data, you can employ deep learning. But it can be a challenge to find training data in some domain sciences.

Looking ahead, what are some of the challenges in developing deep learning tools for science and applying them to research projects at NERSC and other scientific supercomputing facilities?

We can see a range of short-term and long-term challenges in deep learning for science. The short-term challenges are mostly pragmatic issues pertaining to development, enhancement and deployment of tools. These include handling complex data; scientific data tends to be very diverse (compared to images and speech), we are working with 2D, 3D, even 4D data and the datasets can be sparse or dense and defined over a regular, or irregular grid. Deep learning frameworks will need to account for this diversity going forward. Performance and scaling are also barriers. Our current networks can take several days to converge on O(10) GB datasets, but several scientific domains would like to apply deep learning to 10TB-100TB datasets. Thankfully, this problem is right up our alley at HPC centers.

Another important challenge faced by domain scientists is hyper-parameter tuning: Which network architecture do you start with? How do you choose an optimization algorithm? How do you get the network to converge? Unfortunately, only a few deep learning experts know how to address this problem; we need automated strategies/tools. Finally, once scientific communities realize that deep learning can work for them, and access to labeled datasets is the key barrier to entry, they will need to self-organize and conduct labeling campaigns.

The longer-term challenges for deep learning in science are harder, by definition, and include a lack of theory, interpretability, uncertainty quantification and the need for a formal protocol. I believe it’s very early days in the application of deep learning to scientific problems. There’s a lot of low-hanging fruit in publishing easy papers that demonstrate state-of-the-art accuracy for classification, regression and clustering problems. But in order to ensure that the domain science community truly embraces the power of deep learning methods, we have to keep the longer term, harder challenges in mind.

About the Author

Kathy Kincade is a science & technology writer and editor with the Berkeley Lab Computing Sciences Communications Group.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This