Deep Learning for Science: A Q&A with NERSC’s Prabhat

By Kathy Kincade

November 7, 2017

Deep learning is enjoying unprecedented success in a variety of commercial applications, but it is also beginning to find its footing in science. Just a decade ago, few practitioners could have predicted that deep learning-powered systems would surpass human-level performance in computer vision and speech recognition tasks.

These tools are now poised to help scientists contend with some of the most challenging data analytics problems in a number of domains. For example, extreme weather events pose great potential risk on ecosystem, infrastructure and human health. Analyzing extreme weather data from satellites and weather stations and characterizing changes in extremes in simulations is an important task. Similarly, upcoming astronomical sky surveys will obtain measurements of tens of billions of galaxies, enabling precision measurements of the parameters that describe the nature of dark energy. But in each case, analyzing the mountains of resulting data poses a daunting challenge.

Prabhat, NERSC

A growing number of scientists are already employing HPC systems for data analytics, and many are now beginning to apply deep learning and other types of machine learning to their large datasets. Toward this end, in 2016 the U.S. Department of Energy’s National Energy Research Scientific Computing Center (NERSC) expanded its support for deep learning and began forming hands-on collaborations with scientists and industry. NERSC users from science domains such as geosciences, high energy physics, earth systems modeling, fusion and astrophysics are now working with NERSC staff, software tools and services to explore how deep learning can improve their ability to solve challenging science problems.

In this Q&A with Prabhat, who leads the Data and Analytics Services Group at NERSC, he talks about the history of deep learning and machine learning and the unique challenges of applying these data analytics tools to science. Prabhat is also an author on two related technical papers being presented at SC17, “Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data” and “Galactos: Computing the 3-pt Anisotropic Correlation for 2 Billion Galaxies,” and is conducting two deep learning roundtables in the DOE Booth (#613) at SC17. He is also giving a plenary talk on deep learning for science on Sunday, November 12 at the Intel HPC Developer Conference held in conjunction with SC17.

How do you define deep learning, and how does it differ from machine learning?

At the Department of Energy, we tackle inference problems across numerous domains. Given a noisy observation, you would like to infer properties of the object of interest. The discipline of statistics is ideally suited to solve inference problems. The discipline of Machine Learning lies at the intersection of statistics and computer science, wherein core statistical methods were employed by computer scientists to solve applied problems in computer vision and speech recognition. Machine learning has been around for more than 40 years, and there have been a number of different techniques that have fallen in and out of favor: linear regression, k-means, support vector machines and random forests. Neural networks have always been part of machine learning – they were developed at MIT starting in the 1960s – there was the major development of the back-propagation algorithm in the mid-1980s, but they never really picked up until 2012. That is when the new flavor of neural networks – that is, deep learning – really gained prominence and finally started working. So the way I think of deep learning is as a subset of machine learning, which in turn is closely related to the field of statistics, and all of them have to do with solving inference problems of one kind or another.

What technological changes occurred that enabled deep learning to finally start working?

Three important trends have happened over the last 20 years or so. First, thanks to the internet, “big Data,” or large archives of labeled and unlabeled datasets, has become readily accessible. Second, thanks to Moore’s Law, computers have become extremely powerful. A laptop featuring a GPU and a CPU is more capable than supercomputers from previous decades. These two trends were prerequisites for enabling the third wave of modern neural nets, deep learning, to take off. The basic machinery and algorithms have been in existence for three decades, but it is only the unique confluence of large datasets and massive computational horsepower that enabled us to explore the expressive capabilities of Deep Networks.

What are some of the leading types of deep learning methods used today for scientific applications?

As we’ve gone about systematically exploring the application of deep learning to scientific problems over the last four years, what we have found is that there are two dominant architectures that are relevant to science problems. The first is called the convolutional network. This architecture is widely applicable because a lot of the data that we obtain from experimental and observational sources (telescopes and microscopes) and simulations – tend to be in the form of a grid or an image. Similar to commodity cameras, we have 2D images, but we also typically deal with 3D, 4D and multi-channel images. Supervised pattern classification is a common task shared across commercial and scientific use cases; applications include face detection, face recognition, object detection and object classification.

The second approach is more sophisticated and has to do with the recurrent neural network: the long short-term memory (LSTM) architecture. In commercial applications, LSTMs are used for translating speech by learning the sequence-to-sequence mapping between one language and another. In our science cases, we also have sequence-to-sequence mapping problems, such as gene sequencing, for example, or in earth systems modeling, where you are tracking storms in space and time. There are also problems in neuroscience that take recordings from the brain and use LSTM to predict speech. So broadly those two flavors of architectures – convolutional networks and LSTMs – are the dominant deep learning methodologies for science today.

In recent years, we have also explored auto-encoder architectures, which can be used for unsupervised clustering of datasets. We have had some success in applying such methods for analysis of galaxy images in astronomy, and Data Bay sensor data for neutrino discovery. The latest trend in deep learning is the generative adversarial network (GAN). This architecture can be used for creating synthetic data. You can feed in examples from a certain domain, say cosmology images or Large Hadron Collider (LHC) images, and the network will essentially learn a process that can explain these images. Then you can ask that same network to produce more synthetic data that is consistent with other images it has seen. We have empirical evidence that you can use GANs to produce synthetic cosmology or synthetic LHC data without resorting to expensive computational simulations.

What is driving NERSC’s growing deep learning efforts, and how did you come to lead these efforts?

I have a long-standing interest in image processing and computer vision. During my undergrad at IIT Delhi, and grad studies at Brown, I was intrigued by object recognition problems, which seemed to be fairly hard to solve. There was incremental progress in the field through the 1990s and 2000s, and then suddenly in 2012 and 2013 you see this breakthrough performance in solving real problems on real datasets. At that point, the MANTISSA collaboration – a research project originally begun when I was part of Berkeley Lab’s Computational Research Division – was exploring similar pattern detection problems, and it was natural for us to explore whether deep learning could be applied to science problems. We spent the next three to four years exploring applications in earth systems modeling, neuroscience, astronomy and high energy physics.

When a new method/technology comes along, one has to make a judgment call on how long you want to wait before investing time and energy in exploring the possibilities. I think the DAS group at NERSC was one of the early adopters. We recognized the importance of this technique and demonstrated that it could work for science. In the experimental and observational data community, there are a lot of examples of domain scientists who have been struggling with pattern recognition problems for a long time. And now the broader science community is waking up to the possibilities of machine learning to help them solve these problems.

What is NERSC’s current strategy for bringing deep learning capabilities to its users?

Since NERSC is a DOE Office of Science national user facility, we listen to our users, track their emerging requirements and respond to their needs. Our users are telling us that they would like to explore machine learning/deep learning and see what it can do for them. We currently have about 70 users who are actively using deep learning software at NERSC, and we want to make sure that our software, hardware, policies and documentation are all up to speed. Over the past two years, we have worked with the vendor community and identified a few popular deep learning frameworks (TensorFlow, Caffe, Theano and Torch) and have deployed them on Cori. In addition to making the software available, we have documentation and case studies in place. We also have in-depth collaborations in about a dozen areas where NERSC staff, mostly from the DAS group, have worked with scientists to help them explore the application of deep learning. And we are forming strategic relationships with commercial vendors and other research partners in the community to explore the frontier of deep learning for science.

Do certain areas of scientific research lend themselves more than others to applying deep learning?

Right now our success stories span research sponsored by several DOE Office of Science program offices, including BER, HEP and NP. In earth systems modeling, we have shown that convolutional architectures can extract extreme weather patterns in large simulations datasets. In cosmology, we have shown that CNNs can predict cosmological constants, and GANs can be potentially used to supplement existing cosmology simulations.  In astronomy, the Celeste project has effectively used auto-encoders for modeling galaxy shapes. In high energy physics, we are using convolutional architectures for discriminating between different models of particle physics, exploring LSTM architectures for particle tracking. We’ve also shown that deep learning can be used for clustering and classifying various event types at the Daya Bay experiment.

So the big takeaway here is that for the tasks involving pattern classification, regression and creating fast simulators, deep learning seems to do a good job – IF you can find training data. That’s the big catch – if you have labeled data, you can employ deep learning. But it can be a challenge to find training data in some domain sciences.

Looking ahead, what are some of the challenges in developing deep learning tools for science and applying them to research projects at NERSC and other scientific supercomputing facilities?

We can see a range of short-term and long-term challenges in deep learning for science. The short-term challenges are mostly pragmatic issues pertaining to development, enhancement and deployment of tools. These include handling complex data; scientific data tends to be very diverse (compared to images and speech), we are working with 2D, 3D, even 4D data and the datasets can be sparse or dense and defined over a regular, or irregular grid. Deep learning frameworks will need to account for this diversity going forward. Performance and scaling are also barriers. Our current networks can take several days to converge on O(10) GB datasets, but several scientific domains would like to apply deep learning to 10TB-100TB datasets. Thankfully, this problem is right up our alley at HPC centers.

Another important challenge faced by domain scientists is hyper-parameter tuning: Which network architecture do you start with? How do you choose an optimization algorithm? How do you get the network to converge? Unfortunately, only a few deep learning experts know how to address this problem; we need automated strategies/tools. Finally, once scientific communities realize that deep learning can work for them, and access to labeled datasets is the key barrier to entry, they will need to self-organize and conduct labeling campaigns.

The longer-term challenges for deep learning in science are harder, by definition, and include a lack of theory, interpretability, uncertainty quantification and the need for a formal protocol. I believe it’s very early days in the application of deep learning to scientific problems. There’s a lot of low-hanging fruit in publishing easy papers that demonstrate state-of-the-art accuracy for classification, regression and clustering problems. But in order to ensure that the domain science community truly embraces the power of deep learning methods, we have to keep the longer term, harder challenges in mind.

About the Author

Kathy Kincade is a science & technology writer and editor with the Berkeley Lab Computing Sciences Communications Group.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This