Co-Design Center Develops Next-Gen Simulation Tools

By Scott Gibson, Oak Ridge National Laboratory

November 8, 2017

Editor’s Note: Delivering concrete tools to make exascale computing both practical and worthwhile is one of the U.S. Exascale Computing Project’s imperatives. This article from ECP examines the need for and early output from the Center for Efficient Exascale Discretizations, one of ECP’s five co-design centers.   

The exascale architectures on the horizon for supercomputing pose intricate challenges to the developers of large-scale scientific applications. Running efficiently at exascale will not only require porting and optimizing code but also rethinking the design of core algorithms to take advantage of the greater parallelism and more efficient calculation capabilities that exascale systems will offer.

With the aim of efficiently exploiting exascale resources, the Center for Efficient Exascale Discretizations (CEED) of the Exascale Computing Project (ECP) is working closely with a wide variety of application scientists, vendors, and software technology developers to create highly optimized discretization libraries and next-generation mini apps based on what are called advanced high-order finite element methods.

CEED is one of five ECP co-design centers established to enable developers of software technology, hardware technology, and computational science applications to forge multidisciplinary collaborations.

The co-design centers are targeting the most important computational algorithms and patterns of communication in scientific research, referred to as scientific application motifs. By taking advantage of sophisticated mathematical algorithms and advanced hardware such as GPUs, for example, the high-order methods being developed in CEED are delivering improved simulation quality without an increase in computational time.

The computational motif addressed by CEED pertains to discretization, the process of dividing a large simulation into smaller components (finite elements) in preparation for computer analysis. Computer modeling and simulation of physical phenomena such as fluid flow, vibration, and heat is central to understanding the behavior of real-world systems such as solar, wind, combustion, and nuclear fusion and fission. Meshes (or grids) that represent the domain of interest (a wind farm, for example) are created for finite element analysis, in which the equations governing the physics are approximated by polynomials on each element.

CEED’s focus is on efficient implementations of high-order polynomial approximations on unstructured meshes. These methods require advanced mathematical theory and algorithms, but can provide high-fidelity approximations of the fields inside each element, leading to higher-quality solutions with fewer unknown coefficients to be determined. The resulting smaller linear systems need less data movement, which is a critical performance feature of high-performance computing today and on future exascale systems, allowing the CEED algorithms to better exploit the hardware and deliver a significant performance gain over conventional low-order methods, said CEED director Tzanio Kolev of Lawrence Livermore National Laboratory (LLNL).

Members of the Center for Efficient Exascale Discretizations (CEED) team gathered in August at Lawrence Livermore National Laboratory for the center’s first meeting with representatives of projects, vendors, and industry associated with the Exascale Computing Project. CEED plans to have the meeting annually. (Image credit: CEED)

To serve as an integration hub for the ECP efforts, CEED is organized around four interconnected research-and-development thrusts focused on its customers: applications, hardware, software, and finite elements, which ties together and coordinates the efforts of the other three thrusts.

The center is assisting the applications groups through the development of discretization libraries that extract maximal performance out of new hardware as it is deployed and provides this performance to multiple applications without duplication of development effort. Members of the CEED team are designated as liaisons to selected applications, ensuring that the center accounts for their needs and that algorithmic improvements are integrated into applications when the new machines are delivered.

“CEED helps ECP applications by providing them with leading-edge simulation algorithms that can extract much more of the performance from exascale hardware than what’s currently available,” Kolev said.

The first wave of ECP application projects with which CEED has been actively collaborating includes ExaSMR, a coupled Monte Carlo neutronics and fluid flow simulation tool of small modular nuclear reactors, and MARBL, a next-generation multiphysics code at LLNL.

“A discretization library can help a wide variety of applications to bridge the gap to exascale hardware,” Kolev said. “Once we’ve made the connection and the library has been integrated into an application, we can quickly deliver new benefits, such as improved kernels [the core components of numerical algorithms], in the future by upgrading the application to an updated version of the library.”

In addition to libraries of highly performant kernels, key products of the CEED project are new and improved mini apps designed to highlight performance critical paths and provide simple examples of meaningful high-order computations.

The mini apps can be used for interactions with vendors and software technologies projects, and for procurement activities. Two of the mini apps that CEED has developed for those purposes are called Nekbone and Laghos, which are part of the recently released ECP Proxy Applications Suite 1.0. Nekbone and Laghos represent subcomponents of interest from ExaSMR and MARBL.

The Nekbone mini app has a long history, including use in a recent procurement to represent incompressible flow simulations with implicit time stepping. Under CEED, Nekbone is being updated to run on GPUs, an important component of the Titan supercomputer and the upcoming Summit and Sierra machines.

In contrast, Laghos is a new mini app developed in CEED as a proxy for compressible flow simulations with explicit time stepping. “Laghos consists of a particular class of algorithms that pertains to compressible flow with unstructured moving meshes that represents interactions of materials and shock waves as extreme densities and pressures,” Kolev said. “This is the first time we’ve had a really good mini app that captures high-order discretizations for these types of problems. Laghos is important for the activities at many of the National Nuclear Security Administration labs, and we have a lot of interest already from vendors who want to optimize the mini app.”

(The video of a simulation below is an example of the type of high-order calculations that CEED addresses. Shown is a Lagrangian compressible hydrodynamics simulation of triple-point shock interaction in axisymmetric coordinates. The new Laghos mini app is the first proxy for these types of problems. For more details and additional examples of CEED-related simulations, see CEED Publications and OutreachBLAST: High-Order Finite Element Hydrodynamics,  NEK5000, and MFEM. (Simulation movie credit: CEED))

 

Kolev described CEED’s interactions with vendors as a two-way connection. The center is working closely with them to ensure its discretization libraries will run efficiently on the hardware in development. At the same time, CEED is providing feedback to the vendors concerning hardware changes that can improve the performance of high-order algorithms.

“We represent many physicists and applications scientists when we interact with vendors,” Kolev said. “We learn from them how to make low-level optimizations and discover which memory models and programming models are good for our libraries’ algorithms. But we also advocate to the vendors that they should consider certain types of algorithms in their designs.”

When exascale becomes a reality, CEED wants high-order application developers to feel comfortable that they have full support for all tools that are part of their simulation pipeline.

“That means we’re thinking not only about discretization but also meshing, visualization, and the solvers that work with high order at exascale,” Kolev said. “We are collaborating with the teams in the ECP’s Software Technology focus area to develop new mathematical algorithms and expand the tools they are developing to meet the needs of CEED’s computational motif.”

CEED has also proposed important lower-level benchmarking problems (known as bake-off problems) to compare different high-order approaches and engage with the external high-order community via GitHub.

“These problems are designed to exercise really hot kernels that are central to the performance of high-order methods,” Kolev said. “This is an activity we use internally to push each other and learn from each other and make sure we are delivering to the users the best possible performance based on our collective experience. Engaging with the community is a win-win for everyone, and we are already starting to do this: a project in Germany picked up our benchmark problems from GitHub, and ran some very interesting tests. The engagement is ultimately going to benefit the applications because we are going to use the kernels that stem from such interactions in our libraries.”

CEED is a research partnership of two US Department of Energy labs and five universities. The partners are Lawrence Livermore National Laboratory; Argonne National Laboratory; the University of Illinois Urbana-Champaign; Virginia Tech; the University of Tennessee, Knoxville; the University of Colorado, Boulder; and the Rensselaer Polytechnic Institute. The center held its first project meeting in August at LLNL, which it plans to hold annually. The meeting brought together more than 50 researchers from ECP projects, vendors, and industry.

Link to the original article on the ECP web site: https://www.exascaleproject.org/co-design-center-develops-next-generation-simulation-libraries-and-mini-apps/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This