Co-Design Center Develops Next-Gen Simulation Tools

By Scott Gibson, Oak Ridge National Laboratory

November 8, 2017

Editor’s Note: Delivering concrete tools to make exascale computing both practical and worthwhile is one of the U.S. Exascale Computing Project’s imperatives. This article from ECP examines the need for and early output from the Center for Efficient Exascale Discretizations, one of ECP’s five co-design centers.   

The exascale architectures on the horizon for supercomputing pose intricate challenges to the developers of large-scale scientific applications. Running efficiently at exascale will not only require porting and optimizing code but also rethinking the design of core algorithms to take advantage of the greater parallelism and more efficient calculation capabilities that exascale systems will offer.

With the aim of efficiently exploiting exascale resources, the Center for Efficient Exascale Discretizations (CEED) of the Exascale Computing Project (ECP) is working closely with a wide variety of application scientists, vendors, and software technology developers to create highly optimized discretization libraries and next-generation mini apps based on what are called advanced high-order finite element methods.

CEED is one of five ECP co-design centers established to enable developers of software technology, hardware technology, and computational science applications to forge multidisciplinary collaborations.

The co-design centers are targeting the most important computational algorithms and patterns of communication in scientific research, referred to as scientific application motifs. By taking advantage of sophisticated mathematical algorithms and advanced hardware such as GPUs, for example, the high-order methods being developed in CEED are delivering improved simulation quality without an increase in computational time.

The computational motif addressed by CEED pertains to discretization, the process of dividing a large simulation into smaller components (finite elements) in preparation for computer analysis. Computer modeling and simulation of physical phenomena such as fluid flow, vibration, and heat is central to understanding the behavior of real-world systems such as solar, wind, combustion, and nuclear fusion and fission. Meshes (or grids) that represent the domain of interest (a wind farm, for example) are created for finite element analysis, in which the equations governing the physics are approximated by polynomials on each element.

CEED’s focus is on efficient implementations of high-order polynomial approximations on unstructured meshes. These methods require advanced mathematical theory and algorithms, but can provide high-fidelity approximations of the fields inside each element, leading to higher-quality solutions with fewer unknown coefficients to be determined. The resulting smaller linear systems need less data movement, which is a critical performance feature of high-performance computing today and on future exascale systems, allowing the CEED algorithms to better exploit the hardware and deliver a significant performance gain over conventional low-order methods, said CEED director Tzanio Kolev of Lawrence Livermore National Laboratory (LLNL).

Members of the Center for Efficient Exascale Discretizations (CEED) team gathered in August at Lawrence Livermore National Laboratory for the center’s first meeting with representatives of projects, vendors, and industry associated with the Exascale Computing Project. CEED plans to have the meeting annually. (Image credit: CEED)

To serve as an integration hub for the ECP efforts, CEED is organized around four interconnected research-and-development thrusts focused on its customers: applications, hardware, software, and finite elements, which ties together and coordinates the efforts of the other three thrusts.

The center is assisting the applications groups through the development of discretization libraries that extract maximal performance out of new hardware as it is deployed and provides this performance to multiple applications without duplication of development effort. Members of the CEED team are designated as liaisons to selected applications, ensuring that the center accounts for their needs and that algorithmic improvements are integrated into applications when the new machines are delivered.

“CEED helps ECP applications by providing them with leading-edge simulation algorithms that can extract much more of the performance from exascale hardware than what’s currently available,” Kolev said.

The first wave of ECP application projects with which CEED has been actively collaborating includes ExaSMR, a coupled Monte Carlo neutronics and fluid flow simulation tool of small modular nuclear reactors, and MARBL, a next-generation multiphysics code at LLNL.

“A discretization library can help a wide variety of applications to bridge the gap to exascale hardware,” Kolev said. “Once we’ve made the connection and the library has been integrated into an application, we can quickly deliver new benefits, such as improved kernels [the core components of numerical algorithms], in the future by upgrading the application to an updated version of the library.”

In addition to libraries of highly performant kernels, key products of the CEED project are new and improved mini apps designed to highlight performance critical paths and provide simple examples of meaningful high-order computations.

The mini apps can be used for interactions with vendors and software technologies projects, and for procurement activities. Two of the mini apps that CEED has developed for those purposes are called Nekbone and Laghos, which are part of the recently released ECP Proxy Applications Suite 1.0. Nekbone and Laghos represent subcomponents of interest from ExaSMR and MARBL.

The Nekbone mini app has a long history, including use in a recent procurement to represent incompressible flow simulations with implicit time stepping. Under CEED, Nekbone is being updated to run on GPUs, an important component of the Titan supercomputer and the upcoming Summit and Sierra machines.

In contrast, Laghos is a new mini app developed in CEED as a proxy for compressible flow simulations with explicit time stepping. “Laghos consists of a particular class of algorithms that pertains to compressible flow with unstructured moving meshes that represents interactions of materials and shock waves as extreme densities and pressures,” Kolev said. “This is the first time we’ve had a really good mini app that captures high-order discretizations for these types of problems. Laghos is important for the activities at many of the National Nuclear Security Administration labs, and we have a lot of interest already from vendors who want to optimize the mini app.”

(The video of a simulation below is an example of the type of high-order calculations that CEED addresses. Shown is a Lagrangian compressible hydrodynamics simulation of triple-point shock interaction in axisymmetric coordinates. The new Laghos mini app is the first proxy for these types of problems. For more details and additional examples of CEED-related simulations, see CEED Publications and OutreachBLAST: High-Order Finite Element Hydrodynamics,  NEK5000, and MFEM. (Simulation movie credit: CEED))

 

Kolev described CEED’s interactions with vendors as a two-way connection. The center is working closely with them to ensure its discretization libraries will run efficiently on the hardware in development. At the same time, CEED is providing feedback to the vendors concerning hardware changes that can improve the performance of high-order algorithms.

“We represent many physicists and applications scientists when we interact with vendors,” Kolev said. “We learn from them how to make low-level optimizations and discover which memory models and programming models are good for our libraries’ algorithms. But we also advocate to the vendors that they should consider certain types of algorithms in their designs.”

When exascale becomes a reality, CEED wants high-order application developers to feel comfortable that they have full support for all tools that are part of their simulation pipeline.

“That means we’re thinking not only about discretization but also meshing, visualization, and the solvers that work with high order at exascale,” Kolev said. “We are collaborating with the teams in the ECP’s Software Technology focus area to develop new mathematical algorithms and expand the tools they are developing to meet the needs of CEED’s computational motif.”

CEED has also proposed important lower-level benchmarking problems (known as bake-off problems) to compare different high-order approaches and engage with the external high-order community via GitHub.

“These problems are designed to exercise really hot kernels that are central to the performance of high-order methods,” Kolev said. “This is an activity we use internally to push each other and learn from each other and make sure we are delivering to the users the best possible performance based on our collective experience. Engaging with the community is a win-win for everyone, and we are already starting to do this: a project in Germany picked up our benchmark problems from GitHub, and ran some very interesting tests. The engagement is ultimately going to benefit the applications because we are going to use the kernels that stem from such interactions in our libraries.”

CEED is a research partnership of two US Department of Energy labs and five universities. The partners are Lawrence Livermore National Laboratory; Argonne National Laboratory; the University of Illinois Urbana-Champaign; Virginia Tech; the University of Tennessee, Knoxville; the University of Colorado, Boulder; and the Rensselaer Polytechnic Institute. The center held its first project meeting in August at LLNL, which it plans to hold annually. The meeting brought together more than 50 researchers from ECP projects, vendors, and industry.

Link to the original article on the ECP web site: https://www.exascaleproject.org/co-design-center-develops-next-generation-simulation-libraries-and-mini-apps/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It also introduced the D-Wave Launch program intended to jump st Read more…

By John Russell

What’s New in Computing vs. COVID-19: AMD, Remdesivir, Fab Spending & More

September 29, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

Supercomputer Research Aims to Supercharge COVID-19 Antiviral Remdesivir

September 25, 2020

Remdesivir is one of a handful of therapeutic antiviral drugs that have been proven to improve outcomes for COVID-19 patients, and as such, is a crucial weapon in the fight against the pandemic – especially in the abse Read more…

By Oliver Peckham

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It a Read more…

By John Russell

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This