Co-Design Center Develops Next-Gen Simulation Tools

By Scott Gibson, Oak Ridge National Laboratory

November 8, 2017

Editor’s Note: Delivering concrete tools to make exascale computing both practical and worthwhile is one of the U.S. Exascale Computing Project’s imperatives. This article from ECP examines the need for and early output from the Center for Efficient Exascale Discretizations, one of ECP’s five co-design centers.   

The exascale architectures on the horizon for supercomputing pose intricate challenges to the developers of large-scale scientific applications. Running efficiently at exascale will not only require porting and optimizing code but also rethinking the design of core algorithms to take advantage of the greater parallelism and more efficient calculation capabilities that exascale systems will offer.

With the aim of efficiently exploiting exascale resources, the Center for Efficient Exascale Discretizations (CEED) of the Exascale Computing Project (ECP) is working closely with a wide variety of application scientists, vendors, and software technology developers to create highly optimized discretization libraries and next-generation mini apps based on what are called advanced high-order finite element methods.

CEED is one of five ECP co-design centers established to enable developers of software technology, hardware technology, and computational science applications to forge multidisciplinary collaborations.

The co-design centers are targeting the most important computational algorithms and patterns of communication in scientific research, referred to as scientific application motifs. By taking advantage of sophisticated mathematical algorithms and advanced hardware such as GPUs, for example, the high-order methods being developed in CEED are delivering improved simulation quality without an increase in computational time.

The computational motif addressed by CEED pertains to discretization, the process of dividing a large simulation into smaller components (finite elements) in preparation for computer analysis. Computer modeling and simulation of physical phenomena such as fluid flow, vibration, and heat is central to understanding the behavior of real-world systems such as solar, wind, combustion, and nuclear fusion and fission. Meshes (or grids) that represent the domain of interest (a wind farm, for example) are created for finite element analysis, in which the equations governing the physics are approximated by polynomials on each element.

CEED’s focus is on efficient implementations of high-order polynomial approximations on unstructured meshes. These methods require advanced mathematical theory and algorithms, but can provide high-fidelity approximations of the fields inside each element, leading to higher-quality solutions with fewer unknown coefficients to be determined. The resulting smaller linear systems need less data movement, which is a critical performance feature of high-performance computing today and on future exascale systems, allowing the CEED algorithms to better exploit the hardware and deliver a significant performance gain over conventional low-order methods, said CEED director Tzanio Kolev of Lawrence Livermore National Laboratory (LLNL).

Members of the Center for Efficient Exascale Discretizations (CEED) team gathered in August at Lawrence Livermore National Laboratory for the center’s first meeting with representatives of projects, vendors, and industry associated with the Exascale Computing Project. CEED plans to have the meeting annually. (Image credit: CEED)

To serve as an integration hub for the ECP efforts, CEED is organized around four interconnected research-and-development thrusts focused on its customers: applications, hardware, software, and finite elements, which ties together and coordinates the efforts of the other three thrusts.

The center is assisting the applications groups through the development of discretization libraries that extract maximal performance out of new hardware as it is deployed and provides this performance to multiple applications without duplication of development effort. Members of the CEED team are designated as liaisons to selected applications, ensuring that the center accounts for their needs and that algorithmic improvements are integrated into applications when the new machines are delivered.

“CEED helps ECP applications by providing them with leading-edge simulation algorithms that can extract much more of the performance from exascale hardware than what’s currently available,” Kolev said.

The first wave of ECP application projects with which CEED has been actively collaborating includes ExaSMR, a coupled Monte Carlo neutronics and fluid flow simulation tool of small modular nuclear reactors, and MARBL, a next-generation multiphysics code at LLNL.

“A discretization library can help a wide variety of applications to bridge the gap to exascale hardware,” Kolev said. “Once we’ve made the connection and the library has been integrated into an application, we can quickly deliver new benefits, such as improved kernels [the core components of numerical algorithms], in the future by upgrading the application to an updated version of the library.”

In addition to libraries of highly performant kernels, key products of the CEED project are new and improved mini apps designed to highlight performance critical paths and provide simple examples of meaningful high-order computations.

The mini apps can be used for interactions with vendors and software technologies projects, and for procurement activities. Two of the mini apps that CEED has developed for those purposes are called Nekbone and Laghos, which are part of the recently released ECP Proxy Applications Suite 1.0. Nekbone and Laghos represent subcomponents of interest from ExaSMR and MARBL.

The Nekbone mini app has a long history, including use in a recent procurement to represent incompressible flow simulations with implicit time stepping. Under CEED, Nekbone is being updated to run on GPUs, an important component of the Titan supercomputer and the upcoming Summit and Sierra machines.

In contrast, Laghos is a new mini app developed in CEED as a proxy for compressible flow simulations with explicit time stepping. “Laghos consists of a particular class of algorithms that pertains to compressible flow with unstructured moving meshes that represents interactions of materials and shock waves as extreme densities and pressures,” Kolev said. “This is the first time we’ve had a really good mini app that captures high-order discretizations for these types of problems. Laghos is important for the activities at many of the National Nuclear Security Administration labs, and we have a lot of interest already from vendors who want to optimize the mini app.”

(The video of a simulation below is an example of the type of high-order calculations that CEED addresses. Shown is a Lagrangian compressible hydrodynamics simulation of triple-point shock interaction in axisymmetric coordinates. The new Laghos mini app is the first proxy for these types of problems. For more details and additional examples of CEED-related simulations, see CEED Publications and OutreachBLAST: High-Order Finite Element Hydrodynamics,  NEK5000, and MFEM. (Simulation movie credit: CEED))

 

Kolev described CEED’s interactions with vendors as a two-way connection. The center is working closely with them to ensure its discretization libraries will run efficiently on the hardware in development. At the same time, CEED is providing feedback to the vendors concerning hardware changes that can improve the performance of high-order algorithms.

“We represent many physicists and applications scientists when we interact with vendors,” Kolev said. “We learn from them how to make low-level optimizations and discover which memory models and programming models are good for our libraries’ algorithms. But we also advocate to the vendors that they should consider certain types of algorithms in their designs.”

When exascale becomes a reality, CEED wants high-order application developers to feel comfortable that they have full support for all tools that are part of their simulation pipeline.

“That means we’re thinking not only about discretization but also meshing, visualization, and the solvers that work with high order at exascale,” Kolev said. “We are collaborating with the teams in the ECP’s Software Technology focus area to develop new mathematical algorithms and expand the tools they are developing to meet the needs of CEED’s computational motif.”

CEED has also proposed important lower-level benchmarking problems (known as bake-off problems) to compare different high-order approaches and engage with the external high-order community via GitHub.

“These problems are designed to exercise really hot kernels that are central to the performance of high-order methods,” Kolev said. “This is an activity we use internally to push each other and learn from each other and make sure we are delivering to the users the best possible performance based on our collective experience. Engaging with the community is a win-win for everyone, and we are already starting to do this: a project in Germany picked up our benchmark problems from GitHub, and ran some very interesting tests. The engagement is ultimately going to benefit the applications because we are going to use the kernels that stem from such interactions in our libraries.”

CEED is a research partnership of two US Department of Energy labs and five universities. The partners are Lawrence Livermore National Laboratory; Argonne National Laboratory; the University of Illinois Urbana-Champaign; Virginia Tech; the University of Tennessee, Knoxville; the University of Colorado, Boulder; and the Rensselaer Polytechnic Institute. The center held its first project meeting in August at LLNL, which it plans to hold annually. The meeting brought together more than 50 researchers from ECP projects, vendors, and industry.

Link to the original article on the ECP web site: https://www.exascaleproject.org/co-design-center-develops-next-generation-simulation-libraries-and-mini-apps/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This