Co-Design Center Develops Next-Gen Simulation Tools

By Scott Gibson, Oak Ridge National Laboratory

November 8, 2017

Editor’s Note: Delivering concrete tools to make exascale computing both practical and worthwhile is one of the U.S. Exascale Computing Project’s imperatives. This article from ECP examines the need for and early output from the Center for Efficient Exascale Discretizations, one of ECP’s five co-design centers.   

The exascale architectures on the horizon for supercomputing pose intricate challenges to the developers of large-scale scientific applications. Running efficiently at exascale will not only require porting and optimizing code but also rethinking the design of core algorithms to take advantage of the greater parallelism and more efficient calculation capabilities that exascale systems will offer.

With the aim of efficiently exploiting exascale resources, the Center for Efficient Exascale Discretizations (CEED) of the Exascale Computing Project (ECP) is working closely with a wide variety of application scientists, vendors, and software technology developers to create highly optimized discretization libraries and next-generation mini apps based on what are called advanced high-order finite element methods.

CEED is one of five ECP co-design centers established to enable developers of software technology, hardware technology, and computational science applications to forge multidisciplinary collaborations.

The co-design centers are targeting the most important computational algorithms and patterns of communication in scientific research, referred to as scientific application motifs. By taking advantage of sophisticated mathematical algorithms and advanced hardware such as GPUs, for example, the high-order methods being developed in CEED are delivering improved simulation quality without an increase in computational time.

The computational motif addressed by CEED pertains to discretization, the process of dividing a large simulation into smaller components (finite elements) in preparation for computer analysis. Computer modeling and simulation of physical phenomena such as fluid flow, vibration, and heat is central to understanding the behavior of real-world systems such as solar, wind, combustion, and nuclear fusion and fission. Meshes (or grids) that represent the domain of interest (a wind farm, for example) are created for finite element analysis, in which the equations governing the physics are approximated by polynomials on each element.

CEED’s focus is on efficient implementations of high-order polynomial approximations on unstructured meshes. These methods require advanced mathematical theory and algorithms, but can provide high-fidelity approximations of the fields inside each element, leading to higher-quality solutions with fewer unknown coefficients to be determined. The resulting smaller linear systems need less data movement, which is a critical performance feature of high-performance computing today and on future exascale systems, allowing the CEED algorithms to better exploit the hardware and deliver a significant performance gain over conventional low-order methods, said CEED director Tzanio Kolev of Lawrence Livermore National Laboratory (LLNL).

Members of the Center for Efficient Exascale Discretizations (CEED) team gathered in August at Lawrence Livermore National Laboratory for the center’s first meeting with representatives of projects, vendors, and industry associated with the Exascale Computing Project. CEED plans to have the meeting annually. (Image credit: CEED)

To serve as an integration hub for the ECP efforts, CEED is organized around four interconnected research-and-development thrusts focused on its customers: applications, hardware, software, and finite elements, which ties together and coordinates the efforts of the other three thrusts.

The center is assisting the applications groups through the development of discretization libraries that extract maximal performance out of new hardware as it is deployed and provides this performance to multiple applications without duplication of development effort. Members of the CEED team are designated as liaisons to selected applications, ensuring that the center accounts for their needs and that algorithmic improvements are integrated into applications when the new machines are delivered.

“CEED helps ECP applications by providing them with leading-edge simulation algorithms that can extract much more of the performance from exascale hardware than what’s currently available,” Kolev said.

The first wave of ECP application projects with which CEED has been actively collaborating includes ExaSMR, a coupled Monte Carlo neutronics and fluid flow simulation tool of small modular nuclear reactors, and MARBL, a next-generation multiphysics code at LLNL.

“A discretization library can help a wide variety of applications to bridge the gap to exascale hardware,” Kolev said. “Once we’ve made the connection and the library has been integrated into an application, we can quickly deliver new benefits, such as improved kernels [the core components of numerical algorithms], in the future by upgrading the application to an updated version of the library.”

In addition to libraries of highly performant kernels, key products of the CEED project are new and improved mini apps designed to highlight performance critical paths and provide simple examples of meaningful high-order computations.

The mini apps can be used for interactions with vendors and software technologies projects, and for procurement activities. Two of the mini apps that CEED has developed for those purposes are called Nekbone and Laghos, which are part of the recently released ECP Proxy Applications Suite 1.0. Nekbone and Laghos represent subcomponents of interest from ExaSMR and MARBL.

The Nekbone mini app has a long history, including use in a recent procurement to represent incompressible flow simulations with implicit time stepping. Under CEED, Nekbone is being updated to run on GPUs, an important component of the Titan supercomputer and the upcoming Summit and Sierra machines.

In contrast, Laghos is a new mini app developed in CEED as a proxy for compressible flow simulations with explicit time stepping. “Laghos consists of a particular class of algorithms that pertains to compressible flow with unstructured moving meshes that represents interactions of materials and shock waves as extreme densities and pressures,” Kolev said. “This is the first time we’ve had a really good mini app that captures high-order discretizations for these types of problems. Laghos is important for the activities at many of the National Nuclear Security Administration labs, and we have a lot of interest already from vendors who want to optimize the mini app.”

(The video of a simulation below is an example of the type of high-order calculations that CEED addresses. Shown is a Lagrangian compressible hydrodynamics simulation of triple-point shock interaction in axisymmetric coordinates. The new Laghos mini app is the first proxy for these types of problems. For more details and additional examples of CEED-related simulations, see CEED Publications and OutreachBLAST: High-Order Finite Element Hydrodynamics,  NEK5000, and MFEM. (Simulation movie credit: CEED))

 

Kolev described CEED’s interactions with vendors as a two-way connection. The center is working closely with them to ensure its discretization libraries will run efficiently on the hardware in development. At the same time, CEED is providing feedback to the vendors concerning hardware changes that can improve the performance of high-order algorithms.

“We represent many physicists and applications scientists when we interact with vendors,” Kolev said. “We learn from them how to make low-level optimizations and discover which memory models and programming models are good for our libraries’ algorithms. But we also advocate to the vendors that they should consider certain types of algorithms in their designs.”

When exascale becomes a reality, CEED wants high-order application developers to feel comfortable that they have full support for all tools that are part of their simulation pipeline.

“That means we’re thinking not only about discretization but also meshing, visualization, and the solvers that work with high order at exascale,” Kolev said. “We are collaborating with the teams in the ECP’s Software Technology focus area to develop new mathematical algorithms and expand the tools they are developing to meet the needs of CEED’s computational motif.”

CEED has also proposed important lower-level benchmarking problems (known as bake-off problems) to compare different high-order approaches and engage with the external high-order community via GitHub.

“These problems are designed to exercise really hot kernels that are central to the performance of high-order methods,” Kolev said. “This is an activity we use internally to push each other and learn from each other and make sure we are delivering to the users the best possible performance based on our collective experience. Engaging with the community is a win-win for everyone, and we are already starting to do this: a project in Germany picked up our benchmark problems from GitHub, and ran some very interesting tests. The engagement is ultimately going to benefit the applications because we are going to use the kernels that stem from such interactions in our libraries.”

CEED is a research partnership of two US Department of Energy labs and five universities. The partners are Lawrence Livermore National Laboratory; Argonne National Laboratory; the University of Illinois Urbana-Champaign; Virginia Tech; the University of Tennessee, Knoxville; the University of Colorado, Boulder; and the Rensselaer Polytechnic Institute. The center held its first project meeting in August at LLNL, which it plans to hold annually. The meeting brought together more than 50 researchers from ECP projects, vendors, and industry.

Link to the original article on the ECP web site: https://www.exascaleproject.org/co-design-center-develops-next-generation-simulation-libraries-and-mini-apps/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This