SC17: Legion Seeks to Elevate HPC Programming

By Tiffany Trader

November 9, 2017

As modern HPC architectures become ever more complex, so too does the task of programming these machines. In the quest for the trifecta of better performance, portability and programmability, new HPC programming systems are being developed. The Legion programming system, a data-centric parallel programming system for writing portable high performance programs, is one such effort that is being developed at Stanford University in collaboration with Nvidia and several U.S. Department of Energy labs.

In this Q&A, Stanford University Computer Science Chair Alex Aiken and Nvidia Chief Scientist Bill Dally provide an overview of Legion, its goals and its relevance for exascale computing. Aiken will hold a tutorial on the Legion programming model this Sunday at SC17 in Denver from 1:30-5pm MT.

HPCwire: Let’s start with a basic, but important question: why does HPC need new programming models?

Alex Aiken, professor and the chair of computer science at Stanford

Alex Aiken and Bill Dally: New programming models are needed to raise the level of programming to enhance portability across types and generations of high-performance computers. Today programmers specify low-level details, like how much parallelism to exploit, and how to stage data through levels of memory. These low-level details tie an application to the performance of a specific machine, and the effort required to modify the code to target future machines is becoming a major obstacle to actually doing high performance computing. By elevating the level of programming, these target-dependent decisions can be made by the programming system, making it easier to write performant codes, and making the codes themselves performance portable.

HPCwire: What is the Legion programming system? What are the main goals of the project?

Aiken and Dally: Legion is a new programming model for modern supercomputing systems that aims to provide excellent performance, portability, and scalability of application codes across a wide range of hardware. A Legion application is composed of tasks written in language of the programmer’s choice, such as C++, CUDA, Fortran, or OpenACC. Legion tasks specify which “regions” of data they will access as well as what kinds of accesses will be performed. Knowledge of the data used by each task allows Legion to confer many benefits to application developers:

Bill Dally, Nvidia chief scientist & Stanford professor

First, a Legion programming system can analyze the tasks and their data usage to automatically and safely infer parallelism and perform the scheduling transformations necessary to fill an exascale machine, even if the code was written in an apparently-sequential style.

Second, the programming system’s knowledge of which data will be accessed by each task allows Legion to automatically insert the necessary data movement for a complex memory hierarchy, greatly simplifying application code and reducing (or often eliminating) idle cyclems on processors waiting for necessary data to arrive.

Finally, Legion’s machine-agnostic description of an application in terms of tasks and regions decouples the process of specifying an application from the determination of how it is mapped to a target machine. This allows the porting and tuning of an application to be done independently from its development and facilitates tuning by machine experts or even a machine learning algorithm. This makes Legion programs inherently performance portable.

HPCwire: The DOE is investing in Legion development as part as part its exascale program. How is Legion positioned to address the challenges of exascale?

Aiken and Dally: Legion is designed for exascale computation. Legion guarantees that parallel execution has the same result as sequential execution, which is a huge advantage for debugging at scale. Legion also provides rich capabilities for describing how a Legion program uses its data. Since managing and moving data is the limiter in many current petascale and future exascale applications, these features give Legion the information it needs to do a much better job of managing data placement and movement than current programming systems. Legion is also highly asynchronous, avoiding the global synchronization constructs which only become more expensive on larger machines. Finally, under the hood, the Legion implementation exploits the extra information it has about a program’s data and its asynchronous capabilities to the hilt, performing much more sophisticated static and dynamic analysis of programs than is possible in current systems to support Legion’s higher level of abstraction while providing scalable and portable performance.

HPCwire: Why is Nvidia involved in Legion? How does Legion fit into Nvidia’s vision for computing?

Dally: Nvidia wants to make it easy for people to develop production application codes that can scale to exascale machines and easily be ported between supercomputers with different GPU generations, numbers of GPUs, and different sized memory hierarchies. By letting programmers specify target-independent codes at a high level, leaving the mapping decisions to the programming system, Legion accomplishes these goals.

Nvidia is also very excited to collaborate with leading researchers from Stanford University and Los Alamos National Lab to move this technology forward.

HPCwire: One of the stated goals/features of Legion is performance portability; at a high-level, how does it achieve this?

Aiken and Dally: Performance portability is achieved in Legion through a strict separation of concerns: we aim to completely decouple the description of the computation from how it is mapped to the target machine. This approach manifests itself explicitly in the programming model: all Legion programs consist of two parts: a machine-independent specification that describes the computation abstractly without any machine details, and one or more application- and/or machine-specific mappers that make policy decisions about how the application should be executed on the target machine. Machine-independent applications can therefore be written once and easily migrated to new machines only by changing the mapping decisions. Importantly, mapping decisions can only impact the performance of the code and never the correctness as the programming system uses program analysis to determine if any data movement and synchronization is necessary to satisfy the mapping decisions.

HPCwire: Alex, what will you be covering in your SC17 tutorial on Sunday and who should attend?

Aiken: The tutorial will cover the major features of the Legion programming system and will be hands-on; participants will be writing programs almost from the start and every concept will be illustrated with a small programming exercise. Anyone who is interested in learning something about the benefits and state of the art of task-based programming models, and of Legion specifically, should find the tutorial useful.

HPCwire: What is the most challenging part of developing a new HPC programming model?

Aiken and Dally: The most challenging part is managing expectations. Is it easy to forget that it took MPI more than 15 years from the time that the initial prototypes were proposed to when really solid implementations were available for use. Many users are expecting new HPC programming models such as Legion to mature much faster than this. We’ve been lucky to collaborate with groups like Jackie Chen’s combustion group at Sandia National Lab, the FleCSi team at Los Alamos National Lab, and the LCLS-II software team at SLAC that are willing to work with us on real applications that push us through our growing pains and ensure the end result will be one that is broadly useful in the HPC programming ecosystem.

HPCwire: How hard is it for an HPC programmer with a legacy application to migrate that application to Legion?

Aiken and Dally: Legion is designed to facilitate the incremental migration of an MPI-based application. Legion interoperates with MPI, allowing a porting effort to focus on moving the performance-critical sections (e.g., the main time-stepping loop or a key solver) to Legion tasks while leaving other parts of the application such as initialization or file I/O in their original MPI-based form. And since Legion operates at the granularity of tasks, the compute heavy “inner loops” from the original optimized application code can often be used directly as the body of newly-created Legion tasks.

As an example, the combustion simulation application S3D, developed at Sandia National Labs, consists of over 200,000 lines of Fortran+MPI code, but only two engineer-months of effort were required to port the main integration loop to Legion. The integration loop comprises only 15 percent of the overall code base, but consumes 97 percent of the cycles during execution. Although still contained in the original Fortran shell, the use of the Legion version of the integration loop allows S3D to run more than 4x faster than the original Fortran version, and over 2x faster than other GPU-accelerated versions of the code.

The above figure shows the architecture of the Legion programming system. Applications targeting Legion have the option of either being written in the Regent programming language or written directly to the Legion C++ runtime interface. Applications written in Regent are compiled to LLVM (and call a C wrapper for the C++ runtime API). Additional info.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theoretical physicist, cosmologist, author and director of resea Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Alibaba Cloud Launches ‘Bare Metal,’ HPC Instances in Europe

February 28, 2018

Alibaba, the e-commerce giant from China, is taking a run at AWS in the global public cloud computing market with new offerings aimed at the surging demand for Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This