SC17: Legion Seeks to Elevate HPC Programming

By Tiffany Trader

November 9, 2017

As modern HPC architectures become ever more complex, so too does the task of programming these machines. In the quest for the trifecta of better performance, portability and programmability, new HPC programming systems are being developed. The Legion programming system, a data-centric parallel programming system for writing portable high performance programs, is one such effort that is being developed at Stanford University in collaboration with Nvidia and several U.S. Department of Energy labs.

In this Q&A, Stanford University Computer Science Chair Alex Aiken and Nvidia Chief Scientist Bill Dally provide an overview of Legion, its goals and its relevance for exascale computing. Aiken will hold a tutorial on the Legion programming model this Sunday at SC17 in Denver from 1:30-5pm MT.

HPCwire: Let’s start with a basic, but important question: why does HPC need new programming models?

Alex Aiken, professor and the chair of computer science at Stanford

Alex Aiken and Bill Dally: New programming models are needed to raise the level of programming to enhance portability across types and generations of high-performance computers. Today programmers specify low-level details, like how much parallelism to exploit, and how to stage data through levels of memory. These low-level details tie an application to the performance of a specific machine, and the effort required to modify the code to target future machines is becoming a major obstacle to actually doing high performance computing. By elevating the level of programming, these target-dependent decisions can be made by the programming system, making it easier to write performant codes, and making the codes themselves performance portable.

HPCwire: What is the Legion programming system? What are the main goals of the project?

Aiken and Dally: Legion is a new programming model for modern supercomputing systems that aims to provide excellent performance, portability, and scalability of application codes across a wide range of hardware. A Legion application is composed of tasks written in language of the programmer’s choice, such as C++, CUDA, Fortran, or OpenACC. Legion tasks specify which “regions” of data they will access as well as what kinds of accesses will be performed. Knowledge of the data used by each task allows Legion to confer many benefits to application developers:

Bill Dally, Nvidia chief scientist & Stanford professor

First, a Legion programming system can analyze the tasks and their data usage to automatically and safely infer parallelism and perform the scheduling transformations necessary to fill an exascale machine, even if the code was written in an apparently-sequential style.

Second, the programming system’s knowledge of which data will be accessed by each task allows Legion to automatically insert the necessary data movement for a complex memory hierarchy, greatly simplifying application code and reducing (or often eliminating) idle cyclems on processors waiting for necessary data to arrive.

Finally, Legion’s machine-agnostic description of an application in terms of tasks and regions decouples the process of specifying an application from the determination of how it is mapped to a target machine. This allows the porting and tuning of an application to be done independently from its development and facilitates tuning by machine experts or even a machine learning algorithm. This makes Legion programs inherently performance portable.

HPCwire: The DOE is investing in Legion development as part as part its exascale program. How is Legion positioned to address the challenges of exascale?

Aiken and Dally: Legion is designed for exascale computation. Legion guarantees that parallel execution has the same result as sequential execution, which is a huge advantage for debugging at scale. Legion also provides rich capabilities for describing how a Legion program uses its data. Since managing and moving data is the limiter in many current petascale and future exascale applications, these features give Legion the information it needs to do a much better job of managing data placement and movement than current programming systems. Legion is also highly asynchronous, avoiding the global synchronization constructs which only become more expensive on larger machines. Finally, under the hood, the Legion implementation exploits the extra information it has about a program’s data and its asynchronous capabilities to the hilt, performing much more sophisticated static and dynamic analysis of programs than is possible in current systems to support Legion’s higher level of abstraction while providing scalable and portable performance.

HPCwire: Why is Nvidia involved in Legion? How does Legion fit into Nvidia’s vision for computing?

Dally: Nvidia wants to make it easy for people to develop production application codes that can scale to exascale machines and easily be ported between supercomputers with different GPU generations, numbers of GPUs, and different sized memory hierarchies. By letting programmers specify target-independent codes at a high level, leaving the mapping decisions to the programming system, Legion accomplishes these goals.

Nvidia is also very excited to collaborate with leading researchers from Stanford University and Los Alamos National Lab to move this technology forward.

HPCwire: One of the stated goals/features of Legion is performance portability; at a high-level, how does it achieve this?

Aiken and Dally: Performance portability is achieved in Legion through a strict separation of concerns: we aim to completely decouple the description of the computation from how it is mapped to the target machine. This approach manifests itself explicitly in the programming model: all Legion programs consist of two parts: a machine-independent specification that describes the computation abstractly without any machine details, and one or more application- and/or machine-specific mappers that make policy decisions about how the application should be executed on the target machine. Machine-independent applications can therefore be written once and easily migrated to new machines only by changing the mapping decisions. Importantly, mapping decisions can only impact the performance of the code and never the correctness as the programming system uses program analysis to determine if any data movement and synchronization is necessary to satisfy the mapping decisions.

HPCwire: Alex, what will you be covering in your SC17 tutorial on Sunday and who should attend?

Aiken: The tutorial will cover the major features of the Legion programming system and will be hands-on; participants will be writing programs almost from the start and every concept will be illustrated with a small programming exercise. Anyone who is interested in learning something about the benefits and state of the art of task-based programming models, and of Legion specifically, should find the tutorial useful.

HPCwire: What is the most challenging part of developing a new HPC programming model?

Aiken and Dally: The most challenging part is managing expectations. Is it easy to forget that it took MPI more than 15 years from the time that the initial prototypes were proposed to when really solid implementations were available for use. Many users are expecting new HPC programming models such as Legion to mature much faster than this. We’ve been lucky to collaborate with groups like Jackie Chen’s combustion group at Sandia National Lab, the FleCSi team at Los Alamos National Lab, and the LCLS-II software team at SLAC that are willing to work with us on real applications that push us through our growing pains and ensure the end result will be one that is broadly useful in the HPC programming ecosystem.

HPCwire: How hard is it for an HPC programmer with a legacy application to migrate that application to Legion?

Aiken and Dally: Legion is designed to facilitate the incremental migration of an MPI-based application. Legion interoperates with MPI, allowing a porting effort to focus on moving the performance-critical sections (e.g., the main time-stepping loop or a key solver) to Legion tasks while leaving other parts of the application such as initialization or file I/O in their original MPI-based form. And since Legion operates at the granularity of tasks, the compute heavy “inner loops” from the original optimized application code can often be used directly as the body of newly-created Legion tasks.

As an example, the combustion simulation application S3D, developed at Sandia National Labs, consists of over 200,000 lines of Fortran+MPI code, but only two engineer-months of effort were required to port the main integration loop to Legion. The integration loop comprises only 15 percent of the overall code base, but consumes 97 percent of the cycles during execution. Although still contained in the original Fortran shell, the use of the Legion version of the integration loop allows S3D to run more than 4x faster than the original Fortran version, and over 2x faster than other GPU-accelerated versions of the code.

The above figure shows the architecture of the Legion programming system. Applications targeting Legion have the option of either being written in the Regent programming language or written directly to the Legion C++ runtime interface. Applications written in Regent are compiled to LLVM (and call a C wrapper for the C++ runtime API). Additional info.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This