How Cities Use HPC at the Edge to Get Smarter

By Doug Black

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed.

Speaking at SC17 in Denver this week, a panel of smart city practitioners shared the strategies, techniques and technologies they use to understand their cities better and to improve the lives of their residents. With data coming in from all over the urban landscape and worked over by machine learning algorithms, Debra Lam, managing director for smart cities & inclusive innovation at Georgia Tech who works on strategies for Atlanta and the surrounding area, said “we’ve embedded research and development into city operations, we’ve formed a match making exercise between the needs of the city coupled with the most advanced research techniques.”

Panel moderator Charlie Cattlett, director, urban center for computation & data Argonne National Laboratory who works on smart city strategies for Chicago, said that the scale of data involved in complex, long-term modeling will require nothing less than the most powerful supercomputers, including the next generation of exascale systems under development within the Department of Energy. The vision for exascale, he said, is to build “a framework for different computation models to be coupled together in multiple scales to look at long-range forecasting for cities.”

“Let’s say the city is thinking about taking 100 acres and spend a few hundred million dollars to build some new things and rezone and maybe augment public transit,” Cattlett said, “how do you know that that plan is actually what you think it’s going to do? You won’t until 10-20 years later. But if you forecast using computation models you can at least eliminate some of the approaches that would be strictly bad.”

With both Amazon and Microsoft in its metropolitan area, it’s not surprising that Seattle is doing impressive smart city work. Michael Mattmiller, CTO of Seattle, said good planning is necessary for a city expected to grow by 32 percent. Mattmiller said 75 percent of the new residents moving to Seattle are coming for jobs in the technology sector, and they will tend to have high expectations for how their city uses technology.

Some of Seattle’s smart city tactics are relatively straightforward, if invaluable, methods for city government to open the lines of communication with residents and to respond to problems faster. For example, the city developed an app called “Find It, Fix It” in which residents who encounter broken or malfunctioning city equipment (broken street light, potholes, etc.) are encouraged to take a cell phone picture and send a message to the city with a description of the problem and its location.

Of a more strategic nature is Seattle’s goal of becoming carbon neutral by 2050. The key challenges are brought on by the 100,000 people who come to the downtown areas each day for their jobs. The city’s Office of Sustainability collects data on energy consumption from sensors placed on HVAC and lighting systems in office buildings and retail outlets and has developed benchmarks for comparing energy consumption on a per-building basis, notifying building owners if they are above or below their peer group.

Mattmiller said Amazon and Microsoft helped build analytics algorithms that run on Microsoft Azure public cloud. The program is delivering results; Mattmiller said energy consumption is down, with a reduction of 27 million tons of carbon.

Seattle also analyzed weather data and rainfall amounts, discovering that the city has distinct microclimates, with some sections of the city getting as much as eight more inches of rain (the total annual amount of rain in Phoenix) per year than others. This has led to the city issuing weather alerts to areas more likely to have rain events and to send repair and maintenance trucks to higher risk areas.

Transportation, of course, is a major source of pollution, carbon and frustration (30 percent of urban driving is spent looking for parking spaces). Seattle trolled resident for ideas and held a hackathon that produced 14 prototype solutions, including a team from Microsoft who bike to work: they developed a machine learning program that predicts the availability of space on bike racks attached to city buses, “an incredibly clever solution,” Mattmiller said.

In Chicago, Pete Beckman, co-director, Northwestern Argonne Institute of Science and Engineering, Argonne National Laboratory, helped develop sensors placed throughout the city in its Array of Things project. He said that while most sensors used by cities are big, expensive and sparse, Beckman said the project managers wanted to “blanket the city with sensors,” which would collect a broad variety of data and also have significant computational power – a “programmable sensor” that doesn’t just report data but one for which you can write programs to run in the device. They also wanted it to be attractive, so students at the Art Institute of Chicago were recruited to help design the enclosure.

“This becomes a high performance computing problem,” Beckman said. “Why do you need to run programs at the edge? Why run parallel computing out there? Because the amount of data we want to analyze would swamp any network. The ability to have 4K cameras, to have hyperspectral imaging, to have audio, all that (data) can’t be sent back to the data center for processing, it has to be processed right there in a small, parallel supercomputer. Whether it’s Open CV (Open Source Computer Vision Library), Caffe or other deep learning framework like Tensorflow, we have to run the computation out at the edge.”

One scenario outlined was of a sensor detecting an out-of-control vehicle approaching a busy intersection; the sensor picks up on the impending danger and delays the pedestrian “WALK” sign and turns all the traffic lights in the intersection red. These are calculations that require HPC-class computing at the street corner.

Chicago is using its Array of Things sensors in other critical roles, such as real time flood monitoring, for tracking pedestrian, bicycle car and truck traffic and predictively model accidents.

“The questions for us in the parallel computing world,” Beckman said, “are how do we take that structure on our supercomputers and scale it in a way so we have a virtuous loop to do training of large-scale data on the supercomputer and create models that are inference-based, that are quick and fast, that can be pushed out to parallel hardware accelerated out on the edge? The Array of Things project is working on that now.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This