How Cities Use HPC at the Edge to Get Smarter

By Doug Black

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed.

Speaking at SC17 in Denver this week, a panel of smart city practitioners shared the strategies, techniques and technologies they use to understand their cities better and to improve the lives of their residents. With data coming in from all over the urban landscape and worked over by machine learning algorithms, Debra Lam, managing director for smart cities & inclusive innovation at Georgia Tech who works on strategies for Atlanta and the surrounding area, said “we’ve embedded research and development into city operations, we’ve formed a match making exercise between the needs of the city coupled with the most advanced research techniques.”

Panel moderator Charlie Cattlett, director, urban center for computation & data Argonne National Laboratory who works on smart city strategies for Chicago, said that the scale of data involved in complex, long-term modeling will require nothing less than the most powerful supercomputers, including the next generation of exascale systems under development within the Department of Energy. The vision for exascale, he said, is to build “a framework for different computation models to be coupled together in multiple scales to look at long-range forecasting for cities.”

“Let’s say the city is thinking about taking 100 acres and spend a few hundred million dollars to build some new things and rezone and maybe augment public transit,” Cattlett said, “how do you know that that plan is actually what you think it’s going to do? You won’t until 10-20 years later. But if you forecast using computation models you can at least eliminate some of the approaches that would be strictly bad.”

With both Amazon and Microsoft in its metropolitan area, it’s not surprising that Seattle is doing impressive smart city work. Michael Mattmiller, CTO of Seattle, said good planning is necessary for a city expected to grow by 32 percent. Mattmiller said 75 percent of the new residents moving to Seattle are coming for jobs in the technology sector, and they will tend to have high expectations for how their city uses technology.

Some of Seattle’s smart city tactics are relatively straightforward, if invaluable, methods for city government to open the lines of communication with residents and to respond to problems faster. For example, the city developed an app called “Find It, Fix It” in which residents who encounter broken or malfunctioning city equipment (broken street light, potholes, etc.) are encouraged to take a cell phone picture and send a message to the city with a description of the problem and its location.

Of a more strategic nature is Seattle’s goal of becoming carbon neutral by 2050. The key challenges are brought on by the 100,000 people who come to the downtown areas each day for their jobs. The city’s Office of Sustainability collects data on energy consumption from sensors placed on HVAC and lighting systems in office buildings and retail outlets and has developed benchmarks for comparing energy consumption on a per-building basis, notifying building owners if they are above or below their peer group.

Mattmiller said Amazon and Microsoft helped build analytics algorithms that run on Microsoft Azure public cloud. The program is delivering results; Mattmiller said energy consumption is down, with a reduction of 27 million tons of carbon.

Seattle also analyzed weather data and rainfall amounts, discovering that the city has distinct microclimates, with some sections of the city getting as much as eight more inches of rain (the total annual amount of rain in Phoenix) per year than others. This has led to the city issuing weather alerts to areas more likely to have rain events and to send repair and maintenance trucks to higher risk areas.

Transportation, of course, is a major source of pollution, carbon and frustration (30 percent of urban driving is spent looking for parking spaces). Seattle trolled resident for ideas and held a hackathon that produced 14 prototype solutions, including a team from Microsoft who bike to work: they developed a machine learning program that predicts the availability of space on bike racks attached to city buses, “an incredibly clever solution,” Mattmiller said.

In Chicago, Pete Beckman, co-director, Northwestern Argonne Institute of Science and Engineering, Argonne National Laboratory, helped develop sensors placed throughout the city in its Array of Things project. He said that while most sensors used by cities are big, expensive and sparse, Beckman said the project managers wanted to “blanket the city with sensors,” which would collect a broad variety of data and also have significant computational power – a “programmable sensor” that doesn’t just report data but one for which you can write programs to run in the device. They also wanted it to be attractive, so students at the Art Institute of Chicago were recruited to help design the enclosure.

“This becomes a high performance computing problem,” Beckman said. “Why do you need to run programs at the edge? Why run parallel computing out there? Because the amount of data we want to analyze would swamp any network. The ability to have 4K cameras, to have hyperspectral imaging, to have audio, all that (data) can’t be sent back to the data center for processing, it has to be processed right there in a small, parallel supercomputer. Whether it’s Open CV (Open Source Computer Vision Library), Caffe or other deep learning framework like Tensorflow, we have to run the computation out at the edge.”

One scenario outlined was of a sensor detecting an out-of-control vehicle approaching a busy intersection; the sensor picks up on the impending danger and delays the pedestrian “WALK” sign and turns all the traffic lights in the intersection red. These are calculations that require HPC-class computing at the street corner.

Chicago is using its Array of Things sensors in other critical roles, such as real time flood monitoring, for tracking pedestrian, bicycle car and truck traffic and predictively model accidents.

“The questions for us in the parallel computing world,” Beckman said, “are how do we take that structure on our supercomputers and scale it in a way so we have a virtuous loop to do training of large-scale data on the supercomputer and create models that are inference-based, that are quick and fast, that can be pushed out to parallel hardware accelerated out on the edge? The Array of Things project is working on that now.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This