How Cities Use HPC at the Edge to Get Smarter

By Doug Black

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed.

Speaking at SC17 in Denver this week, a panel of smart city practitioners shared the strategies, techniques and technologies they use to understand their cities better and to improve the lives of their residents. With data coming in from all over the urban landscape and worked over by machine learning algorithms, Debra Lam, managing director for smart cities & inclusive innovation at Georgia Tech who works on strategies for Atlanta and the surrounding area, said “we’ve embedded research and development into city operations, we’ve formed a match making exercise between the needs of the city coupled with the most advanced research techniques.”

Panel moderator Charlie Cattlett, director, urban center for computation & data Argonne National Laboratory who works on smart city strategies for Chicago, said that the scale of data involved in complex, long-term modeling will require nothing less than the most powerful supercomputers, including the next generation of exascale systems under development within the Department of Energy. The vision for exascale, he said, is to build “a framework for different computation models to be coupled together in multiple scales to look at long-range forecasting for cities.”

“Let’s say the city is thinking about taking 100 acres and spend a few hundred million dollars to build some new things and rezone and maybe augment public transit,” Cattlett said, “how do you know that that plan is actually what you think it’s going to do? You won’t until 10-20 years later. But if you forecast using computation models you can at least eliminate some of the approaches that would be strictly bad.”

With both Amazon and Microsoft in its metropolitan area, it’s not surprising that Seattle is doing impressive smart city work. Michael Mattmiller, CTO of Seattle, said good planning is necessary for a city expected to grow by 32 percent. Mattmiller said 75 percent of the new residents moving to Seattle are coming for jobs in the technology sector, and they will tend to have high expectations for how their city uses technology.

Some of Seattle’s smart city tactics are relatively straightforward, if invaluable, methods for city government to open the lines of communication with residents and to respond to problems faster. For example, the city developed an app called “Find It, Fix It” in which residents who encounter broken or malfunctioning city equipment (broken street light, potholes, etc.) are encouraged to take a cell phone picture and send a message to the city with a description of the problem and its location.

Of a more strategic nature is Seattle’s goal of becoming carbon neutral by 2050. The key challenges are brought on by the 100,000 people who come to the downtown areas each day for their jobs. The city’s Office of Sustainability collects data on energy consumption from sensors placed on HVAC and lighting systems in office buildings and retail outlets and has developed benchmarks for comparing energy consumption on a per-building basis, notifying building owners if they are above or below their peer group.

Mattmiller said Amazon and Microsoft helped build analytics algorithms that run on Microsoft Azure public cloud. The program is delivering results; Mattmiller said energy consumption is down, with a reduction of 27 million tons of carbon.

Seattle also analyzed weather data and rainfall amounts, discovering that the city has distinct microclimates, with some sections of the city getting as much as eight more inches of rain (the total annual amount of rain in Phoenix) per year than others. This has led to the city issuing weather alerts to areas more likely to have rain events and to send repair and maintenance trucks to higher risk areas.

Transportation, of course, is a major source of pollution, carbon and frustration (30 percent of urban driving is spent looking for parking spaces). Seattle trolled resident for ideas and held a hackathon that produced 14 prototype solutions, including a team from Microsoft who bike to work: they developed a machine learning program that predicts the availability of space on bike racks attached to city buses, “an incredibly clever solution,” Mattmiller said.

In Chicago, Pete Beckman, co-director, Northwestern Argonne Institute of Science and Engineering, Argonne National Laboratory, helped develop sensors placed throughout the city in its Array of Things project. He said that while most sensors used by cities are big, expensive and sparse, Beckman said the project managers wanted to “blanket the city with sensors,” which would collect a broad variety of data and also have significant computational power – a “programmable sensor” that doesn’t just report data but one for which you can write programs to run in the device. They also wanted it to be attractive, so students at the Art Institute of Chicago were recruited to help design the enclosure.

“This becomes a high performance computing problem,” Beckman said. “Why do you need to run programs at the edge? Why run parallel computing out there? Because the amount of data we want to analyze would swamp any network. The ability to have 4K cameras, to have hyperspectral imaging, to have audio, all that (data) can’t be sent back to the data center for processing, it has to be processed right there in a small, parallel supercomputer. Whether it’s Open CV (Open Source Computer Vision Library), Caffe or other deep learning framework like Tensorflow, we have to run the computation out at the edge.”

One scenario outlined was of a sensor detecting an out-of-control vehicle approaching a busy intersection; the sensor picks up on the impending danger and delays the pedestrian “WALK” sign and turns all the traffic lights in the intersection red. These are calculations that require HPC-class computing at the street corner.

Chicago is using its Array of Things sensors in other critical roles, such as real time flood monitoring, for tracking pedestrian, bicycle car and truck traffic and predictively model accidents.

“The questions for us in the parallel computing world,” Beckman said, “are how do we take that structure on our supercomputers and scale it in a way so we have a virtuous loop to do training of large-scale data on the supercomputer and create models that are inference-based, that are quick and fast, that can be pushed out to parallel hardware accelerated out on the edge? The Array of Things project is working on that now.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire