SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

By John Russell

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning as images of stars and galaxies and tiny telescopes and giant telescopes streamed across the high definition screen extended the length of Colorado Convention Center ballroom’s stage. One was reminded of astronomer Carl Sagan narrating the Cosmos TV series.

SKA, you may know, is the Square Kilometre Array project being run by an international consortium and intended to build the largest radio telescope in the world; it will be 50 times more powerful than any other radio telescope today. The largest today is  ALMA (Atacama Large Millimeter/submillimeter Array) located in Chile and has 66 dishes.

SKA will be sited in two locations, South Africa, and Australia. The two keynoters Philip Diamond, Director General of SKA, and Rosie Bolton, SKA Regional Centre Project Scientist and Project Scientist for the international engineering consortium designing the high performance computers, took turns outlining radio astronomy history and SKA’s ambition to build on that. Theirs was a swiftly-moving talk, both entertaining and informative. The visuals flashing adding to the impact.

Their core message: This massive new telescope will open a new window on astrophysical phenomena and create a mountain of data for scientists to work on for years. SKA, say Diamond and Bolton, will help clarify the early evolution of the universe, be able to detect gravitational waves by their effect on pulsars, shed light on dark matter, produce insight around cosmic magnetism, create detailed, accurate 3D maps of galaxies, and much more. It could even play a SETI like role in the search for extraterrestrial intelligence.

“When fully deployed, SKA will be able to detect TV signals, if they exist, from the nearest tens maybe 100 stars and will be able to detect the airport radars across the entire galaxy,” said Diamond, in response to a question. SKA is creating a new government organization to run the observatory, “something like CERN or the European Space Agency, and [we] are now very close to having this process finalized,” said Diamond.

Indeed this is exciting stuff. It is also incredibly computationally intensive. Think about an army of dish arrays and antennas, capturing signals 24×7, moving them over high speed networks to one of two digital “signal processing facilities”, one for each location, and then on to two “science data processors” centers (think big computers). And let’s not forget data must be made available to scientists around the world.

Consider just a few data points, shown below, that were flashed across stage during the keynote presentation. The context will become clearer later.

It’s a grand vision and there’s still a long way to go. SKA, like all Big Science projects, won’t happen overnight. SKA was first conceived in 90s at the International Union of Radio Science (URSI) which established the Large Telescope Working Group to begin a worldwide effort to develop the scientific goals and technical specifications for a next generation radio observatory. The idea arose to create a “hydrogen array” able to detect H radiofrequency emission (~1420 MHz). A square kilometer was required to have a large enough collection area to see back into the early universe. In 2011 those efforts consolidated in a not-for-profit company that now has ten member countries (link to brief history of SKA). The U.S. which did participate in early SKA efforts chose not to join the consortium at the time.

Although first conceived as a hydrogen array, Diamond emphasized, “With a telescope of that size you can study many things. Even in its early stages SKA will be able to map galaxies early in the universe’s evolution. When fully deployed it will conduct fullest galaxy mapping in 3D encompassing up to one million individual galaxies and cover 12.5 billon years of cosmic history.”

A two-phase deployment is planned. “We’re heading full steam towards critical design reviews next year,” said Diamond. Full construction starts in two years with construction of the first phase expected to begin in 2019. So far €200 million have been committed for design along with “a large fraction” of the €640 million required for first phase construction. Clearly there are technology and funding hurdles ahead. Diamond quipped if the U.S. were to join SKA and pony up, say $2 billion, they would ‘fix’ the spelling of kilometre to kilometer.

There will actually be two telescopes, one in South Africa about 600 km north of Cape Town and another one roughly 800 km north of Perth in western Australia. They are being located in remote regions to reduce radiofrequency interference from human activities.

“In South Africa we are going to be building close to 200 dishes, 15 meters in diameter, and the dishes will be spread over 150 km. They [will operate] over a frequency range of 350 MHz to 14 GHz. In Australia we will build 512 clusters, each of 256 antennas. That means a total of over 130,000 2-meter tall antennas, spread over 65 km. These low frequency antennas will be tapered with periodic dipoles and will cover the frequency range 50 to 350MHz. It is this array that will be the time machine that observes hydrogen all the way back to the dawn of the universe.”

Pretty cool stuff. Converting those signals into data is a mammoth task. SKA plans two different types of processing center for each location. “The radio waves induce voltages in the receivers that capture them and modern technology allows us to digitize them to higher precision than ever before. From there optical fibers transmit the digital data from the telescopes to what we call central processing facilities or (CPFs). There’s one for each telescope,” said Bolton.

Using a variety of technologies including “some exciting FPGA, CPU-GPU, and hybrids,” CPFs are where the signals are combined. Great care must be taken to first synchronize the data so it enters the processing chain exactly when it should to account for the fact the radio waves from space reached one antenna before reaching another. “We need to correct that phase offset down to the nanosecond,” said Bolton.

Once that’s done a Fourier transform is applied to the data. “It decomposes essentially a function of time into the frequencies that make it up; it moves us into the frequency domain. We do this with such precision that SKA will be able to process 65,000 different radio frequencies simultaneously,” said Diamond

Once the signals have been separated into frequencies they are processed one of two ways. “We can either stack the signals together of various antenna in what we call time domain data. Each stacking operation corresponds to a different direction in the sky. We’ll be able to look at 2000 such directions simultaneously. This time domain processing analysis detects repeating objects such as pulsars or one-off events like gamma ray explosions. If we do find an event, we are planning to store the raw voltage signals at the antennas for a few minutes so we can go back in time and investigate them to see what happened,” said Bolton.

This time domain data can be used by researchers to measure pulsar – which are a bit like cosmic lighthouses – signal arrival times accurately and detect the drift if there is one as a gravitational wave passes through.

“We can also use these radio signals to make images of the sky. To do that we take the signals from each pair of antennas, each baseline, and effectively multiply them together generating data objects we call visibilities. Imagine it will be done for 200 dishes and 512 groups of antennas, that’s 150,000 baselines ad 65,000 different frequencies. That makes up to 10 billion different data streams. Doing this is a data intensive process that requires around 50 petaflops of dedicated digital signal processing.

“Signals are processed inside these central processing facilities in a way that depends on the science that we want to do with them,” said Bolton. Once processed the data are then sent via more fiber optic cables to the Science Data Processors or SDPs. Two of these “great supercomputers” are planned, one in Cape Town for the dish array and one in Perth for low frequency antennas.

“We have two flavors of data within the Science Data Processors. In the time domain we’ll do panning for astrophysical gold, searching over 1.5M candidate objects every ten minutes sniffing out the real astrophysical phenomena such as pulsar signals or flashes of radio light,” said Diamond. The expectation is for a 10,000 to 1 negative-to-positive events. Machine learning will play a key role in finding the “gold.”

Making sense of the 10 billion incoming visibility data streams poses the greatest computational burden, emphasized Bolton: “This is really hard because inside the visibilities (data objects) the sky and antenna responses are all jumbled. We need to do another massive Fourier transform to get from the visibility space that depends on the antenna separations to sky planes. Ultimately we need to develop self-consistent models not only of the sky that generated the signals but also of how each antenna was behaving and even how the atmosphere was changing during the data gathering.

“We can’t do that in one fell swoop. Instead we’ll have several iterations trying to find the calibration parameters and source positions of brightnesses. With each iteration, bit by bit, fainter and fainter signal emerge from the noise. Every time we do another iteration we apply different calibration techniques and we improve a lot of them but we can’t be sure when this process is going to converge [on the best solution] so it is going to be difficult,” said Bolton.

A typical SKA map, she said, will probably contain hundreds of thousands of radio array sources. The incoming images are about 10 petabytes in size. Output 3D images are 5,000 pixels on each axis and 1 petabyte in size.

Distributing this data to scientists for analysis is another huge challenge. The plan is to distribute data via fiber to SKA regional centers. “This is another real game changer that the SKA, CERN, and a few other facilities are bringing about. Scientists will use the computing power of the SKA regional centers to analyze these data products,” said Diamond.

The keynote was a wowing, multimedia presentation, and warmly received by attendees. It bears repeating that many issues remain and schedules have slipped slightly, but it is still a stellar example of Big Science, requiring massively coordinated international efforts, and underpinned with enormous computing resources. Such collaboration is well aligned with SC17’s theme – HPC Connects.

Link to video recording of the presentation:

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This