SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

By John Russell

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning as images of stars and galaxies and tiny telescopes and giant telescopes streamed across the high definition screen extended the length of Colorado Convention Center ballroom’s stage. One was reminded of astronomer Carl Sagan narrating the Cosmos TV series.

SKA, you may know, is the Square Kilometre Array project being run by an international consortium and intended to build the largest radio telescope in the world; it will be 50 times more powerful than any other radio telescope today. The largest today is  ALMA (Atacama Large Millimeter/submillimeter Array) located in Chile and has 66 dishes.

SKA will be sited in two locations, South Africa, and Australia. The two keynoters Philip Diamond, Director General of SKA, and Rosie Bolton, SKA Regional Centre Project Scientist and Project Scientist for the international engineering consortium designing the high performance computers, took turns outlining radio astronomy history and SKA’s ambition to build on that. Theirs was a swiftly-moving talk, both entertaining and informative. The visuals flashing adding to the impact.

Their core message: This massive new telescope will open a new window on astrophysical phenomena and create a mountain of data for scientists to work on for years. SKA, say Diamond and Bolton, will help clarify the early evolution of the universe, be able to detect gravitational waves by their effect on pulsars, shed light on dark matter, produce insight around cosmic magnetism, create detailed, accurate 3D maps of galaxies, and much more. It could even play a SETI like role in the search for extraterrestrial intelligence.

“When fully deployed, SKA will be able to detect TV signals, if they exist, from the nearest tens maybe 100 stars and will be able to detect the airport radars across the entire galaxy,” said Diamond, in response to a question. SKA is creating a new government organization to run the observatory, “something like CERN or the European Space Agency, and [we] are now very close to having this process finalized,” said Diamond.

Indeed this is exciting stuff. It is also incredibly computationally intensive. Think about an army of dish arrays and antennas, capturing signals 24×7, moving them over high speed networks to one of two digital “signal processing facilities”, one for each location, and then on to two “science data processors” centers (think big computers). And let’s not forget data must be made available to scientists around the world.

Consider just a few data points, shown below, that were flashed across stage during the keynote presentation. The context will become clearer later.

It’s a grand vision and there’s still a long way to go. SKA, like all Big Science projects, won’t happen overnight. SKA was first conceived in 90s at the International Union of Radio Science (URSI) which established the Large Telescope Working Group to begin a worldwide effort to develop the scientific goals and technical specifications for a next generation radio observatory. The idea arose to create a “hydrogen array” able to detect H radiofrequency emission (~1420 MHz). A square kilometer was required to have a large enough collection area to see back into the early universe. In 2011 those efforts consolidated in a not-for-profit company that now has ten member countries (link to brief history of SKA). The U.S. which did participate in early SKA efforts chose not to join the consortium at the time.

Although first conceived as a hydrogen array, Diamond emphasized, “With a telescope of that size you can study many things. Even in its early stages SKA will be able to map galaxies early in the universe’s evolution. When fully deployed it will conduct fullest galaxy mapping in 3D encompassing up to one million individual galaxies and cover 12.5 billon years of cosmic history.”

A two-phase deployment is planned. “We’re heading full steam towards critical design reviews next year,” said Diamond. Full construction starts in two years with construction of the first phase expected to begin in 2019. So far €200 million have been committed for design along with “a large fraction” of the €640 million required for first phase construction. Clearly there are technology and funding hurdles ahead. Diamond quipped if the U.S. were to join SKA and pony up, say $2 billion, they would ‘fix’ the spelling of kilometre to kilometer.

There will actually be two telescopes, one in South Africa about 600 km north of Cape Town and another one roughly 800 km north of Perth in western Australia. They are being located in remote regions to reduce radiofrequency interference from human activities.

“In South Africa we are going to be building close to 200 dishes, 15 meters in diameter, and the dishes will be spread over 150 km. They [will operate] over a frequency range of 350 MHz to 14 GHz. In Australia we will build 512 clusters, each of 256 antennas. That means a total of over 130,000 2-meter tall antennas, spread over 65 km. These low frequency antennas will be tapered with periodic dipoles and will cover the frequency range 50 to 350MHz. It is this array that will be the time machine that observes hydrogen all the way back to the dawn of the universe.”

Pretty cool stuff. Converting those signals into data is a mammoth task. SKA plans two different types of processing center for each location. “The radio waves induce voltages in the receivers that capture them and modern technology allows us to digitize them to higher precision than ever before. From there optical fibers transmit the digital data from the telescopes to what we call central processing facilities or (CPFs). There’s one for each telescope,” said Bolton.

Using a variety of technologies including “some exciting FPGA, CPU-GPU, and hybrids,” CPFs are where the signals are combined. Great care must be taken to first synchronize the data so it enters the processing chain exactly when it should to account for the fact the radio waves from space reached one antenna before reaching another. “We need to correct that phase offset down to the nanosecond,” said Bolton.

Once that’s done a Fourier transform is applied to the data. “It decomposes essentially a function of time into the frequencies that make it up; it moves us into the frequency domain. We do this with such precision that SKA will be able to process 65,000 different radio frequencies simultaneously,” said Diamond

Once the signals have been separated into frequencies they are processed one of two ways. “We can either stack the signals together of various antenna in what we call time domain data. Each stacking operation corresponds to a different direction in the sky. We’ll be able to look at 2000 such directions simultaneously. This time domain processing analysis detects repeating objects such as pulsars or one-off events like gamma ray explosions. If we do find an event, we are planning to store the raw voltage signals at the antennas for a few minutes so we can go back in time and investigate them to see what happened,” said Bolton.

This time domain data can be used by researchers to measure pulsar – which are a bit like cosmic lighthouses – signal arrival times accurately and detect the drift if there is one as a gravitational wave passes through.

“We can also use these radio signals to make images of the sky. To do that we take the signals from each pair of antennas, each baseline, and effectively multiply them together generating data objects we call visibilities. Imagine it will be done for 200 dishes and 512 groups of antennas, that’s 150,000 baselines ad 65,000 different frequencies. That makes up to 10 billion different data streams. Doing this is a data intensive process that requires around 50 petaflops of dedicated digital signal processing.

“Signals are processed inside these central processing facilities in a way that depends on the science that we want to do with them,” said Bolton. Once processed the data are then sent via more fiber optic cables to the Science Data Processors or SDPs. Two of these “great supercomputers” are planned, one in Cape Town for the dish array and one in Perth for low frequency antennas.

“We have two flavors of data within the Science Data Processors. In the time domain we’ll do panning for astrophysical gold, searching over 1.5M candidate objects every ten minutes sniffing out the real astrophysical phenomena such as pulsar signals or flashes of radio light,” said Diamond. The expectation is for a 10,000 to 1 negative-to-positive events. Machine learning will play a key role in finding the “gold.”

Making sense of the 10 billion incoming visibility data streams poses the greatest computational burden, emphasized Bolton: “This is really hard because inside the visibilities (data objects) the sky and antenna responses are all jumbled. We need to do another massive Fourier transform to get from the visibility space that depends on the antenna separations to sky planes. Ultimately we need to develop self-consistent models not only of the sky that generated the signals but also of how each antenna was behaving and even how the atmosphere was changing during the data gathering.

“We can’t do that in one fell swoop. Instead we’ll have several iterations trying to find the calibration parameters and source positions of brightnesses. With each iteration, bit by bit, fainter and fainter signal emerge from the noise. Every time we do another iteration we apply different calibration techniques and we improve a lot of them but we can’t be sure when this process is going to converge [on the best solution] so it is going to be difficult,” said Bolton.

A typical SKA map, she said, will probably contain hundreds of thousands of radio array sources. The incoming images are about 10 petabytes in size. Output 3D images are 5,000 pixels on each axis and 1 petabyte in size.

Distributing this data to scientists for analysis is another huge challenge. The plan is to distribute data via fiber to SKA regional centers. “This is another real game changer that the SKA, CERN, and a few other facilities are bringing about. Scientists will use the computing power of the SKA regional centers to analyze these data products,” said Diamond.

The keynote was a wowing, multimedia presentation, and warmly received by attendees. It bears repeating that many issues remain and schedules have slipped slightly, but it is still a stellar example of Big Science, requiring massively coordinated international efforts, and underpinned with enormous computing resources. Such collaboration is well aligned with SC17’s theme – HPC Connects.

Link to video recording of the presentation: https://www.youtube.com/watch?time_continue=2522&v=VceKNiRxDBc

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contain Read more…

By John Russell

Intel at CES: Nervana; 10nm Server CPU; Cascade Lake

January 9, 2019

On the eve of the Consumer Electronics Show in Las Vegas this week, Intel staged a launch event that covered a new version of its Nervana AI processor and a demonstration of the next-generation Xeon 10nm chip. The Read more…

By Staff

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Data: The Key To Unlocking Modern Research

Research tackles the big questions, delving into uncharted territory in pursuit of knowledge that could change the world. Today’s research simulations are generating more data than ever before, a trend that shows no signs of slowing. Read more…

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim Read more…

By Ben Criger

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Batswana Gems

December 20, 2018

Most who work in the high-performance computing (HPC) industry agree; people problems are far more complicated than technical challenges. As I wrote in a 2015 HPCwire feature titled, “Women in HPC: Revelations and Reckoning,” diversity, or the lack thereof, is the HPC industry’s current grand challenge. Read more…

By Elizabeth Leake

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This