How you can Boost Acceleration with OpenCAPI, Today!

By Myron Slota, President, OpenCAPI Consortium, and, Scott Graham, Chairperson, OpenCAPI Consortium

November 27, 2017

The challenges in silicon scaling and the demands of today’s data-intensive Artificial Intelligence (AI), High Performance Computing (HPC), and analytics workloads are forcing rapid growth in deployment of accelerated computing in our industry.  In addition, the next several years will see a new wave of disruptive memory technologies that will transform the economics of large memory deployments in support of these applications.  But this new wave of accelerators and disruptive technologies won’t add much value if the platform they’re running on wasn’t designed to unleash their potential.

OpenCAPI was developed to fuel this heterogeneous computing revolution by unleashing the potential of these new technologies!  New trends are emerging as accelerators become more commonplace and workloads are being re-written or developed from scratch with acceleration in mind.  Accelerators need improved access to the capacity and low cost per Gigabyte of system memory without the inefficiency of the IO subsystem; OpenCAPI achieves this by providing very high bandwidth with coherency.  The portion of the application running on the accelerator often requires fine-grained interaction with the portion of the application running on the CPU.  The programming complexity and CPU overhead required to communicate with a traditional I/O-attached accelerator makes this impractical, but OpenCAPI places the accelerator natively into the application’s user space to bring about this fine-grained interaction.  These trends led to the development of the OpenCAPI architecture.

To facilitate broad adoption, OpenCAPI was architected to minimize the amount and complexity of circuitry required in an accelerator. In the case of an FPGA, less than five percent of the logic is consumed. Placing the complexity in the CPU instead of the accelerator also allows OpenCAPI to be supportable across all CPU architectures.  Programing with OpenCAPI was also made easier with virtual addressing.  The OpenCAPI architecture also enables a heterogeneous data center environment by enabling not only accelerators but also coherent network controllers, and coherent storage controllers.  In addition, OpenCAPI enables both advanced memory with a wide range of access semantics from load/store to user-mode data transfer models, and access to classic DRAM memory with extremely low latencies.

With products launching now, OpenCAPI is becoming the open standard interface for high performance acceleration today.  As seen at SC17 in the OpenCAPI Consortium and development partners’ booths, there are a wide variety of OpenCAPI based products ranging from systems to components and additional hardware is being tested today in various laboratories.

Join a team that is driving to make a difference in our industry today!  Start by visiting the OpenCAPI Consortium website at www.opencapi.org to learn more including information about membership.  You can also download the protocol specifications after a simple registration process.  Visit the website or stop by the OpenCAPI Consortium booth #1587 at SC17 for more details.  The OpenCAPI Consortium is an open standards forum that is home to the OpenCAPI specifications, enablement, and has operating work groups including the TL and DL protocols, PHY, enablement, and more.  There are now over 30 members of which many are engaged in product development that leverages OpenCAPI technology.

Development Partner Quotes and Blog Links

Companies that are making a difference today include the following:

Mellanox Technologies recently announced the Innova-2 FPGA-based Programmable Adapter, an OpenCAPI based solution which will result in delivering innovative platforms for high-performance computing and deep learning applications.  “We are happy to demonstrate our Innova-2 FPGA-based programmable adapter supporting the OpenCAPI interface at the supercomputing conference 2017,” said Gilad Shainer, vice president of marketing at Mellanox Technologies. “The deep collaborations among the OpenCAPI consortium members enables Mellanox to introduce OpenCAPI based solutions to the market in a short time, which will result in delivering innovative platforms for high-performance computing and deep learning applications.” SC17 booth #653.

Molex Electronic Solutions showcased at SC17 the Flash Storage Accelerator (FSA) development platform which supports OpenCAPI natively and brings hyper converged accelerated storage to Google’s/Rackspace’s Zaius/Barreleye-G2 POWER9 OCP Platform.  “FSA is designed to natively support the benefits of OpenCAPI by providing the lowest possible latency and highest bandwidth to NVMe Storage with the added benefits of OpenCAPI Flash functionality and near storage FPGA acceleration,” said Allan Cantle, founder of Nallatech which was recently purchased by Molex.  “HPDA applications such as Graph Analytics, In-Memory Databases and Bioinformatics are expected to benefit greatly from this platform.” SC17 booth #1263.

Alpha Data Inc. offers OpenCAPI enabled FPGA accelerator boards, featuring Xilinx UltraScale+ FPGAs on POWER9 for high-performance, compute intensive cognitive workloads. “Alpha Data’s Xilinx® FPGA based boards provide the highest performance per watt, lowest latency and simple programming methods for heterogeneous processing systems using POWER architecture,” said Adam Smith, Director of Marketing.  SC17 booth #1838.

Xilinx, Inc. is the leading accelerator platform for OpenCAPI enabled All-Programmable FPGAs, SoCs, and 3DICs.  “Xilinx is pleased to be the accelerator of choice furthering the adoption of the OpenCAPI interface which enables new datacenter and high performance computing workloads,” said Ivo Bolsens, Senior Vice President and Chief Technology Officer, Xilinx. SC17 booth #681.

Amphenol Corporation announced their OpenCAPI FPGA Loop Back cable and OpenCAPI cable.  These enable testing and OpenCAPI accelerators to be connected to standard PCIe while signaling to the host processor through sockets attached to the main system board.  “We are excited to work on OpenCAPI solutions by leveraging our interconnect technology for improved signal integrity and increased bandwidth,” said Greg McSorley, Business Development Manager.

IBM rolled out the CORAL Program at SC17, demonstrating how acceleration is being leveraged by the U.S. Department of Energy’s Summit supercomputer. Coral is equipped with the POWER9 based AC922 system and NVIDIA’s newest Volta-based Tesla GPU accelerator.  “This system will be one of the fastest supercomputers in the world when fully operational next year,” said Brad McCredie, Vice President and IBM Fellow, Cognitive Systems Development. “It will push the frontiers of scientific computing, modeling and simulation.” SC17 booth #1525.

Western Digital is tracking OpenCAPI standards development while exploring OpenCAPI prototype memory and accelerator devices to standardize the process for key storage, memory and accelerator interfaces.  “OpenCAPI standardizes high speed serial, low latency interconnect for memory devices and accelerator devices, the key enablement technologies for new data center workloads focused on machine learning and artificial intelligence,” said Zvonimir Bandic, Sr. Director, Next Generation Platform Technologies, Western Digital.  SC17 booth #643.

Micron is working to unlock the next generation of memory technology with the development of new interface standards such as OpenCAPI in their current and future products. “Unlocking next generations of acceleration and machine learning will require the development of new interface standards such as OpenCAPI,” said Jon Carter, VP-Emerging Memory, Business Development.  “Micron continues to support these standards-setting activities to develop differentiated platforms that leverage Micron’s current and future products.” SC17 booth #1963.

Rackspace is at center stage in the OpenCAPI ecosystem, working with Google to make its two socket POWER9 server, Zaius/Barreleye G2, an appealing development platform for accelerators in the Open Compute community. “The OpenCAPI accelerator and software ecosystem is growing rapidly” said Adi Gangidi, Senior Design Engineer with Rackspace. “With design, manufacturing and firmware collateral available via the Open Compute website, accelerator developers find it easy to design and test their solutions on our platform.”

Tektronix offers test solutions that are applicable to OpenCAPI’s physical layer standards capable of testing at 25Gbps and beyond.  Tektronix offers best-in-class solutions for receiver and transmitter characterization, automation, and debug supporting data rates through 32Gb/s.  “We are excited to be a Contributing Member of the OpenCAPI Consortium,” said Joe Allen, Market Segment Lead at Tektronix.  “Tektronix provides unique tools that are widely used within the Data Center and are scalable for OpenCAPI and we look forward to deliver comprehensive test and characterization solutions in this emerging market.”

Toshiba Electronic Devices & Storage Corp. is working on custom silicon design platforms that enable users to rapidly develop and deploy OpenCAPI based accelerator solutions in the computing, storage and networking space. “We are excited about the tremendous interest in custom silicon for machine learning and AI accelerators,” said Yukihiro Urakawa, Vice President, Logic LSI Division. “By offering pre-verified OpenCAPI sub-system IP in our custom silicon portfolio, we look forward to seeing very high performance, power optimized accelerators that take full advantage of the OpenCAPI interface.”

Wistron unveiled their POWER9 system design at SC17 that incorporated OpenCAPI technology through the 25Gbps high speed links.  “In order to provide the best backend architecture in AI, Big Data, and Cloud applications, Wistron POWER9 system design incorporates OpenCAPI technology through 25Gbps high speed link to dramatically change the traditional data transition method. This design not only improves GPU performance, but also utilizes next generation advanced memory, coherent network, storage, and FPGA. This is an ideal system infrastructure to meet next decade computing world challenges,” said Donald Hwang, Chief Technology Officer and President of EBG at Wistron Corporation.

Inventec introduced and demonstrated the Lan Yang system based on the Open Compute Project (OCP) platform.  “Two POWER9 processors and state of the art bus technology including OpenCAPI and PCIe Gen4 provides the basis for the most advanced technologies for 48V Open Power solutions,” said Lynn Chiu of Inventec.  “We took in one step further and added AST2500 for smart management and OCP Mezz 2.0 slots for expansion and heterogeneous infrastructure to support dedicated customer’s requirement for data center applications.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This