SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

By Dan Olds

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition.

We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks.

Now it’s time to dive into the results, see how the other teams did, and figure out what’s what. Let’s walk through the application and task results and see what happened.

The Interview: All of the teams did pretty well on the interview portion of the competition. This is a pressure packed part of the competition. HPC subject matter experts grill the students on everything from how they configured their cluster to detailed questions about each of the benchmarks and applications. There’s no hiding from their probing questions.

Nanyang had the highest interview score, notching an almost perfect 97%, but they were closely followed by Team Texas and Tsinghua, who tied for second with 96%.

Team Chicago Fusion (IIT/MHS/SHS) deserves an honorable mention for only being 3% off the winning mark on the interview portion of the scoring.

All of the teams did well in this area, as you can tell by the average/median score of 93%.

The ‘mystery application’ is an app that students only learn about when they’re at the competition. There’s no preparing for it, it’s like suddenly being told in a basketball game that for one quarter, the hoop height will be increased to 15 feet or decreased to five.

The mystery app for 2017 is MPAS A, an application developed Los Alamos National Lab and the National Center for Atmospheric Research to build weather simulations. Students were given the task of modeling what would happen to the rest of the atmosphere if excess carbon was sequestered in Antarctica.

This is Team Chicago Fusion’s best application – they nailed it and left it for dead with a score of 100%. Nanyang almost scored the bullseye with a score of 99% and Tsinghua was an eyelash behind, posting a score of 98%. NTHU finished just out of the money with a 97% score.

As you can see by the high median score, most of the teams were bunched up on the good side of the average – meaning that most teams scored well on this application with a few outliers on the low low side.

The next task up is the Reproducibility exercise. This is where the teams take a paper that was submitted for SC16 and try to reproduce the results – either proving the paper is valid, or…well, not so valid.

The paper this year has an intriguing title, “The Vectorization of the Tersoff Multi-Body Potential: An Exercise in Performance Portability”, and shows how to use a vectorization scheme to achieve high cross-platform (CPU and accelerator) performance.

Student teams have to use the artifact section of the paper to reproduce the results and either prove or disprove the paper, then submit a report detailing and justifying how they arrived at their conclusion.

Nanyang posted another win, building on their lead over the rest of the pack. Team Texas took home second place, only six points behind Nanyang. NEU finds the winner board for the first time in the competition with their third place showing.

Team Chicago Fusion gets an Honorable Mention for their score of 82%, just a couple of points away from second and third place, while Team Illinois Urbana-Champaign and Taiwan’s NTHU finish in a virtual tie at 80% and 79% (and some change) separating them.

The rest of the teams had at least some trouble with this task as witnessed by the median being significantly higher than the mean score. This indicates that there are several teams who encountered difficulties completing this task. But, hey, who said this was going to be easy?

Speaking of things that are difficult, how about that MrBayes? This year, the students were using MrBayes to examine how viruses transmitted by white flies are impacting cassava production in Africa.

This wasn’t an easy application for most of the teams. While Tsinghua pulled down a 99% score, closely trailed by Nanyang with 98%, the average score on this app was only 67% and the median was 64%.

This was a great app for NEU, however, with their 96% score putting them in the winners circle. Team Chicago Fusion was just a few fractions of a point behind NEU, nabbing the Honorable Mention.

The most difficult application in this edition of the cluster competition looks to be Born, a seismic imaging app used to identify oil and gas reserves. It’s not that this was necessarily the most complicated or difficult to understand application, it’s that it was so damned time consuming. And it’s the time consuming nature of Born that separated the teams in the final accounting.

The teams had to try to process 1,136 Born “shots.” Each shot is independent of the others, which makes for an embarrassingly parallel application – great, right? Well, no. Running on CPUs alone, each Born shot takes somewhere between two and three hours. Ouch.

Several of the teams decided to use their cloud budget and run a bunch of Born instances in the cloud. While this was a good idea, the teams didn’t have enough cloud capacity to run all that much Born – particularly since each shot took so long to complete.

The best approach was to port Born onto GPUs, as four or five teams proved. The top teams on our leaderboard all ported Born and realized great dividends. Tsinghua completed the entire 1,136 slate of datasets and posted a score of 99%. Nanyang also completed all of the datasets and took home second place with their score of 90%. NTHU was a nanometer behind and grabbed third place. USTC gets an honorable mention for posting a score of 83%.

The rest of the teams didn’t do so hot on this one. The average score was competition low of 63% with the median score at 55%. This was a tough mountain to climb and if you didn’t port Born over to GPUs, you didn’t have a chance to complete all of the datasets, even if you were able to devote your entire cluster to it.

Looking at the final stats, Nanyang was the clear winner with an astounding 95 out of a possible 100 points. NTHU and Tsinghua finished very close together, with NTHU nabbing second place by fractions of a percent. Team Peking, a relative newbie with this being their second appearance in the competition, takes home an honorable mention.

These teams finished above the rest of the pack by a respectable margin, as shown by the average score of 70% and the median score of 71%. But, at the end of the day, all of the teams were winners. Everyone showed up, no one gave up, and everyone learned a lot (including me, in fact).

So that’s another student cluster competition in the books. If you’ve missed any of our coverage, you can catch up on it using the following links.

For an intro into the high-stakes world of student cluster competitions, look here.

If you want to see what kind of hardware the teams are driving, here are their configs.

If you want to see the applications and tasks for this year’s event, click your clicker here.

To meet this year’s teams via our video interviews, click here for the American teams, here for the European teams, and here for the Asian teams.

One final note: the bettors in our betting pool were woefully uninformed. The ‘smart money’ was pretty dumb this year, given that the winning Nanyang team was placed as a 35-1 underdog. Wow, if this was a real pool, anyone betting on Nanyang would have really cleaned up!

We’ll be back with more Student Cluster Competition features, more competitions, and even better coverage in 2018. Stay tuned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire