GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

By Tiffany Trader

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they’ve entered into a strategic partnership. The companies will develop and manufacture Ayar’s optical I/O technology using GF’s CMOS fabrication process to deliver an alternative to copper interconnects that offers 10 times higher bandwidth and up to five times lower power. As part of the agreement, GF has also invested an undisclosed amount in Ayar.

The partners say the collaboration will create unique and differentiated solutions for cloud servers, datacenters and HPC customers and will benefit from GF’s investment in 45nm CMOS technology.

Ayar Labs’ photonics devices will be manufactured on GF’s 45nm RF SOI (Radio Frequency Silicon on Insulator) process at its East Fishkill fab. GF says it expects to deliver prototype parts for Ayar Lab customers in 2018 and will be ready to support production ramp-up post successful qualification.

GlobalFoundries East Fishkill, NY, facility

Although today’s announcement marks the start of a formal direct relationship between the companies, the researchers who formed Ayar Labs have using the fab’s technology to design silicon photonics components since 2009 but they did so via multi-project wafer runs, relying on aggregators who collect designs from university groups and startups that don’t have the resources to do full wafer runs.

Ayar Labs was launched in 2016 by a group of researchers from MIT, UC Berkeley, and CU Boulder who were part of a 10-year research collaboration funded by DARPA. Their breakthrough was to put advanced electronics and optics on the same chip leading to the development of the first microprocessor chip to communicate using light, implemented via standard CMOS.

“They had a really interesting approach,” explained Alex Wright-Gladstein, CEO of Ayar Labs and one of its cofounders. “Instead of taking manufacturing methods from the optics industry which usually use materials like indium phosphide and different III-V materials, instead of using that set of techniques to make optics, they just said let’s try to use standard CMOS manufacturing, pure silicon, with no change to the standard CMOS process, and see if we can make optics work in that totally different framework and use optical I/O instead of electrical I/O, get rid of electrical I/O entirely, get rid of copper.

“While there’s been attention on longer distance optical communication, we’re doing shorter distances, trying to replace copper cables that are used inside datacenters and even the copper traces on printed circuit boards. We’re very excited about the partnership with GlobalFoundries, having their backing and validation, because it will help open up a new customer base to us and this partnership will help us qualify our products and get them into the market faster,” said Wright-Gladstein.

Source: Ayar Labs

The problem that the technology is aiming to solve is well understood in HPC circles and in the semiconductor industry. Moore’s law has driven an exponential increase in the amount of computing power you can fit on a chip while the speed at which data moves in and out of chips has only made incremental gains. Over the past few decades, that has become a bottleneck so processors and servers can process huge amounts of data but spend a lot of time waiting to send and receive data.

The DARPA-backed research effort resulted in a chip with a bandwidth density of 300 gigabits per second per square millimeter, “about 10 to 50 times greater than packaged electrical-only microprocessors currently on the market.”

The technology is well described in the inventors’ December 2015 Nature paper, which HPCwire covered here. The first two authors, Chen Sun of UC Berkeley and Mark Wade of CU Boulder, are Ayar Labs full-time cofounders. The professors who co-authored the paper are part-time cofounders MIT’s Rajeev Ram, Vladimir Stojanovic at UC Berkeley, and Miloš Popovic from CU Boulder.

Improvements have been made in terms of data rates since the paper was published, Wright-Gladstein told HPCwire: “We’ve moved to standard wavelength ranges. We’re using O-band wavelengths rather than the non-standard 1,180nm that was described in that paper, but the fundamental architecture is still using that same approach so that micro-ring resonator based approach with dense wavelength division multiplexing (DWDM) at lots of wavelengths on a single fiber.”

Ayar’s first products will support 8 and 16 wavelengths of light on a single fiber and eventually they plan to go to 32.

Ayar is implementing the technology in multi-chip modules, where you have chiplets in the same package with very short electrical links connecting them. “So it doesn’t really matter where the processor is getting made or what node it’s in,” said the CEO. “It can be a 7nm CMOS node with ultra short reach links coming out of it that just go to our very close chiplet that’s integrated in-package with that processor chip or similarly with a switch ASIC, for example. And because those electrical links are so short they are also very very low power so you end up enabling a full kit package with multiple chiplets in it that is lower power than if you were to have beefier electrical SerDes driving the signal a longer distance.”

Ayar is targeting two spaces initially: high-performance computing and the traditional datacenter. “Until now there’s always been a tradeoff between going to go to higher bandwidth in your network versus having low latencies, and we are not forcing system architects to have to make those tradeoffs,” said Wright-Gladstein, who points to the potential for speeding machine/deep learning training by enabling highly parallel models.

Ayar also believes its technology has a role to play in enabling disaggregated architectures. “Having bigger pools of processing power and memory makes it so you can be more flexible about how you allocate your jobs across your datacenter and reduce the amount of time that your resources are idling and not being used,” said the CEO.

In the big picture, Wright-Gladstein is bullish about the success of on-chip optical I/O in the datacenter, expecting that it will replace CMOS SerDes within the next 5-10 years, clarifying that “it’s just the I/O portion that I think will be replaced, the power is we’re still using CMOS for everything else.”

“It’s pretty clear that we’re at the end of CMOS electrical I/O and being able to scale electrical SerDes as we have in the past,” she continued. “25 gigabits per second per pin is where we are today and people are working on 50 gigabits per second per pin. There’s a cadence of doubling that bandwidth every few years but folks are starting to struggle with the idea of moving to 100 gigabits per second per pin electrical SerDes and it’s tough to imagine going beyond that so something else needs to come along and [Ayar] technology which offers a 10x improvement rather than the standard 2x is really going to be an enabler for that.”

Alex Wright-Gladstein

While the Ayar CEO envisions light displacing electrical communications in the near future, over the longer term, she sees opportunities for silicon photonics beyond I/O, for example in quantum computing. She relates that teams looking to use optics for quantum computing face challenges with respect to manufacturability where it’s difficult to achieve the high consistency (low variation) that optical devices demand and high yield.

“At Ayar, we get to use this massive ecosystem of CMOS manufacturing, having GlobalFoundries, a standard CMOS fab, manufacturing our chips, something that is totally unique within optics,” she says. “Most optics manufacturing is much lower volume and much lower yield, but just the fact that billions of dollars have been poured into the CMOS manufacturing ecosystem means it’s a much more reliable manufacturing flow with much better controls. So in the longer term we want to make our platform available to a wide range of different applications for optics, such as quantum computing, LIDAR imaging for self-driving cars, and many healthcare applications.”

Anthony Yu, who leads the silicon photonics business within GF, told HPCwire that the company plans to move to its next-generation 45nm photonics process in 2019. That will be a follow on to the 90nm photonics process running currently in GF’s East Fishkill facility.

“That will be a process design entirely for photonics, entirely for things like optical tranceivers and we’ll be taking up Ayar Labs technology in the pure photonics process and bringing about even more performance for both Ayar Labs and our customers,” he said.

Of course, Ayar and GF aren’t the only companies pursuing the potential and promise of silicon photonics. Intel and IBM have demonstrated multiple breakthroughs already and hyperscalers have considerable motivation to develop their own technologies. Competition is sure to be fierce.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This