HPC Iron, Soft, Data, People – It Takes an Ecosystem!

By Alex R. Larzelere

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational capabilities that are used to deliver insights into the behaviors of complex systems. This collection of technologies and people has been called the High Performance Computing (HPC) ecosystem. This is an appropriate metaphor because it evokes the complicated nature of the interdependent elements needed to deliver first of a kind computing systems.

The idea of the HPC ecosystem has been around for years and most recently appeared in one of the objectives for the National Strategic Computing Initiative (NSCI). The 4th objective calls for “Increasing the capacity and capability of an enduring national HPC ecosystem.” This leads to the questions of, “what makes up the HPC ecosystem” and why is it so important? Perhaps the more important question is, why does the United States need to be careful about letting its HPC ecosystem diminish?

The heart of the HPC ecosystem is clearly the “big humming boxes” that contain the advanced computing hardware. The rows upon rows of cabinets are the focal point of the electronic components, operating software, and application programs that provide the capabilities that produce the results used to create new scientific and engineering insights that are the real purpose of the HPC ecosystem. However, it is misleading to think that any one computer at any one time is sufficient to make up an ecosystem. Rather, the HPC ecosystem requires a continuous pipeline of computer hardware and software. It is that continuous flow of developing technologies that keeps HPC progressing on the cutting edge.

The hardware element of the pipeline includes systems and components that are under development, but are not currently available. This includes the basic research that will create the scientific discoveries that enable new approaches to computer designs. The ongoing demand for “cutting edge” systems is important to keep system and component designers pushing the performance envelope. The pipeline also includes the currently installed highest performance systems. These are the systems that are being tested and optimized. Every time a system like this is installed, technology surprises are found that must be identified and accommodated. The hardware pipeline also includes systems on the trailing edge. At this point, the computer hardware is quite stable and allows a focus on developing and optimizing modeling and simulation applications.

One of the greatest challenges of maintaining the HPC ecosystem is recognizing that there are significant financial commitments needed to keep the pipeline filled. There are many examples of organizations that believed that buying a single big computer would make them part of the ecosystem. In those cases, they were right, but only temporarily. Being part of the HPC ecosystem requires being committed to buying the next cutting-edge system based on the lessons learned from the last system.

Another critical element of the HPC ecosystem is software. This generally falls into two categories – software needed to operate the computer (also called middleware or the “stack”) and software that provides insights into end user questions (called applications). Middleware plays the critical role of managing the operations of the hardware systems and enabling the execution of applications software. Middleware includes computer operating systems, file systems and network controllers. This type of software also includes compilers that translate application programs into the machine language that will be executed on hardware. There are quite a number of other pieces of middleware software that include libraries of commonly needed functions, programming tools, performance monitors, and debuggers.

Applications software span a wide range and are as varied as the problems users want to address through computation. Some applications are quick “throwaway” (prototype) attempts to explore potential ways in which computers may be used to address a problem. Other applications software is written, sometimes with different solution methods, to simulate physical behaviors of complex systems. This software will sometimes last for decades and will be progressively improved. An important aspect of these types of applications is the experimental validation data that provide confidence that the results can be trusted. For this type of applications software, setting up the problem that can include finite element mesh generation, populating that mesh with material properties and launching the execution are important parts of the ecosystem. Other elements of usability of application software include the computers, software, and displays that allow users to visualize and explore simulation results.

Data is yet another essential element of the HPC ecosystem. Data is the lifeblood in the circulatory system that flows through the system to keep it doing useful things. The HPC ecosystem includes systems that hold and move data from one element to another. Hardware aspects of the data system include memory, storage devices, and networking. Also software device drivers and file systems are needed to keep track of the data. With the growing trend to add machine learning and artificial intelligence to the HPC ecosystem, its ability to process and productively use data are becoming increasingly significant.

Finally, and most importantly, trained and highly skilled people are an essential part of the HPC ecosystem. Just like computing systems, these people make up a “pipeline” that starts in elementary school and continues through undergraduate and then advanced degrees. Attracting and educating these people in computing technologies is critical. Another important part of the people pipeline of the HPC ecosystem are the jobs offered by academia, national labs, government, and industry. These professional experiences provide the opportunities needed to practice and hone HPC skills.

The origins of the United States’ HPC ecosystem dates back to the decision by the U.S. Army Research Lab to procure an electronic computer to calculate ballistic tables for its artillery during World War II (i.e. ENIAC). That event led to finding and training the people, who in many cases were women, to program and operate the computer. The ENIAC was just the start of the nation’s significant investment in hardware, middleware software, and applications. However, just because the United States was the first does not mean that it was alone. Europe and Japan also have robust HPC ecosystems for years and most recently China has determinedly set out to create one of their own.

The United States and other countries made the necessary investments in their HPC ecosystems because they understood the strategic advantages that staying at the cutting edge of computing provides. These well-document advantages apply to many areas that include: national security, discovery science, economic competitiveness, energy security and curing diseases.

The challenge of maintaining the HPC ecosystem is that, just like a natural ecosystem, the HPC version can be threatened by becoming too narrow and lacking diversity. This applies to the hardware, middleware, and applications software. Betting on just a few types of technologies can be disastrous if one approach fails. Diversity also means having and using a healthy range of systems that covers the highest performance cutting edge systems to wide deployment of mid and low-end production systems. Another aspect of diversity is the range of applications that can productively use on advanced computing resources.

Perhaps the greatest challenge to an ecosystem is complacency and assuming that it, and the necessary people, will always be there. This can take the form of an attitude that it is good enough to become a HPC technology follower and acceptable to purchase HPC systems and services from other nations. Once a HPC ecosystem has been lost, it is not clear if it can be regained. Having a robust HPC ecosystem can last for decades, through many “half lives” of hardware. A healthy ecosystem allows puts countries in a leadership position and this means the ability to influence HPC technologies in ways that best serve their strategic goals. Happily, the 4th NSCI objective signals that the United States understands these challenges and the importance of maintaining a healthy HPC ecosystem.

About the Author

Alex Larzelere is a senior fellow at the U.S. Council on Competitiveness, the president of Larzelere & Associates Consulting and HPCwire’s policy editor. He is currently a technologist, speaker and author on a number of disruptive technologies that include: advanced modeling and simulation; high performance computing; artificial intelligence; the Internet of Things; and additive manufacturing. Alex’s career has included time in federal service (working closely with DOE national labs), private industry, and as founder of a small business. Throughout that time, he led programs that implemented the use of cutting edge advanced computing technologies to enable high resolution, multi-physics simulations of complex physical systems. Alex is the author of “Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI).”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This