Researchers Advance User-Level Container Solution for HPC

By Isabel Campos & Jorge Gomes

December 18, 2017

Most scientific computing facilities, such us HPC or grid infrastructures, are shared among different research disciplines, and thus the system software environment needs to be generic enough to accommodate different user and applications profiles; they are multi-user environments.

Because of managerial and technical constraints, such infrastructures cannot afford offering every research project a tailored environment in their machines. Therefore the interest of exploring the applicability of containers technology on such systems is rather evident from the end-user point of view.

Researchers need then to customize their applications software to fit the computing center environment at the level of system software and batch system. Containers provide a way to pack and deploy software including all the dependencies in a way that can be executed in a seamless way, independently of the underlying Linux Operating System and environment. The main benefit of integrating the execution of containers in HPC systems would then be to provide a way to execute applications homogeneously across different resource centers.

The flagship container software, Docker, cannot be used in a satisfactory way on HPC systems, grids and in general multi-user oriented infrastructures. Deploying Docker on such facilities presents a number of problems related to the fact that within the container, processes are executed with the root id. This raises security concerns among system managers, as the Docker root might be able to gain access to root privileges in the host machine. Also, when executed as root, the processes escape from the usual managerial limits on resource consumption or accounting, imposed on regular users at shared facilities.

User-level tools

The user-level tool udocker provides a layer for users to execute Docker containers, that by definition, does not require the intervention of the system administrators. Udocker combines the pulling, extraction and execution of Docker containers without requiring privileges. The Docker image is extracted on a user-space filesystem area, and from there on, it is executed in an chroot-like environment.

udocker provides a command line interface that mimics Docker, providing a subset of its commands to be able to handle Docker images at the level of pulling, extracting and execute containers “á la Docker”.

Processes are run without privileges under the regular user id, under the same process tree, thus facilitating the enforcement of the managerial limits imposed to regular users in HPC or grid resource centers.

udocker provides several ways, depending on the application and host environment, to execute containerized applications. It is also possible to access specialized hardware like Infiniband for MPI jobs, or GPGPUs, making it adequate to execute containers in batch systems and HPC infrastructures.

udocker enables the execution of Docker containers with different engines based on intercepting system calls. Depending on the application requirements the user may choose to run in one execution mode or another. For instance CPU-intensive applications may use udocker in the ptrace execution mode, to intercept and modify pathnames; if the application is I/O intensive the interception of system calls via library pre-loading using the Fakechroot execution mode is a more adequate way to run the container. All the tools and libraries required by udocker and its execution modes are provided with udocker itself.

The udocker execution mode RunC employs the technology of user namespaces to run the containers in rootless mode. This feature can be used with modern Linux distributions with kernels from 3.9 on. However most HPC systems are conservative environments and it will take some time until they will be able to support this execution mode.

Regarding impact in performance, in the figure presented below we have plotted the weak scaling performance of openQCD, a comprehensive software package to run Lattice QCD simulations (a CPU-intensive application) from 8 to 256 cores.

As we see, the performance of the containerized version of openQCD is slightly higher than the one on the host itself. This is especially so when the execution takes place within a single node (the test machine has 24-core nodes).

This behavior has been reported consistently by container users across different hardware and system software settings, and it is related to the better libraries available in the more advanced versions of the operating systems inside the container. Clearly this feature opens the door to container exploitation in HPC mainframes since there the software system is by necessity very conservative.

Figure Caption: Weak Scaling performance of openQCD with a local lattice of Volume=32^4. The tests have been performed on the Finisterrae-II HPC system at CESGA (Spain).

Since its first release in June 2016 udocker expanded quickly in the open source community. It is being used in large international collaborations like the case of MasterCode, a leading particle physics phenomenology collaboration, which uses udocker to handle the library complexity of the set of codes included in the MasterCode.

It has also been adopted by a number of software projects to complement Docker. Among them openmole, bioconda, Common Workflow Language or SCAR.

System Administration level

Beyond the user level, several solutions have been developed in recent times to support system administrators in deploying customized containers for their users. These solutions rely on the installation of system software by the system administrator, which also is in charge of preparing the containers that the users are authorized to run on the system. The most popular of these tools is Singularity.

Singularity can be downloaded and installed from source or binaries, and must be installed by root for the software to have all the functionalities. Singularity binaries are therefore installed with SUID and need be deployed in a filesystem that allows SUID. Given the security concerns on network filesystems regarding SUID, Singularity is normally installed in a directory locally accessible to the users (i.e., not network-mounted).

Singularity offers its own containers registry, the Singularity Hub, and its own specification to create containers, the Singularity Recipe (i.e., the Singularity equivalent of the Dockerfile specification).

The default container format is squashfs, which is a compressed read-only Linux file system, where the images need to be created by root.

It also supports a sandbox format, in which the container is deployed inside a standard Unix directory, much like udocker. In particular, executing udocker in Singularity execution mode will cause the container to be executed via Singularity if installed in the system. In order to do this udocker exploits the sandbox mode.

The container building environment of Singularity belongs to root. Containers may be built either from a Singularity recipe, from a previous container coming from the Singularity Hub, or importing a container from the Docker repository. Notice that the Singularity format for containers is not compatible with Docker; therefore, in the latter case the container needs to be converted to the Singularity format.

Once the container exists, it can be executed by a regular user in a way analogous to Docker. These containers can also be checked at the binary level, at the level of sensitive content of the filesystem for example, or even for particular features defined by the system administrator.

The comparison of the most popular tools, udocker and Singularity, shows that they have a completely different scope, and the selection of one solution or another depends on the priorities at the user level and the computing center management policies.

Singularity is a system administration level tool, to be installed at this level, giving the managers of the infrastructure full control of which containers are run into the system or not. Udocker however is a user tool that acts as a layer over different execution methods, enabling regular users to run containers in their own user space, much in the philosophy of the jailed systems.

About the Authors

Jorge Gomes is a computing researcher at the Laboratory of Instrumentation and Experimental Particle Physics (LIP). He worked in the development of advanced data acquisition systems at CERN, and participated in pioneering projects in the domain of digital satellite data communications, IP over ATM, and advanced videoconferencing over IP networks. Since 2001 he has participated in numerous projects regarding distributed computing, networks and security in Europe and Latin America. He is the head of the LIP Advanced Computing and Digital Infrastructures Group and technical coordinator of the Portuguese National Grid Infrastructure, representative of Portugal in the Council of the European Grid Infrastructure (EGI) and responsible for the Portuguese participation in IBERGRID, that joins Portuguese and Spanish distributed computing infrastructures.

Isabel Campos is a physics researcher at the Spanish National Research Council (CSIC). She holds a PhD in the area of Lattice QCD simulations, and has hold research associate positions at DESY-Hamburg and Brookhaven National Lab, and Leibniz Supercomputing Center in Munich. Since 2005 she has participated in numerous project aimed at developing software and deploy distributed computing infrastructures in Europe. She is the head of the e-Science and Computing group at IFCA-CSIC, coordinator of the Spanish National Grid Infrastructure, representative of Spain in the Council of the European Grid Infrastructure (EGI) and responsible for the Spanish participation in IBERGRID, that joins the Spanish and Portuguese distributed computing infrastructures.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This