Momentum Builds for US Exascale

By Alex R. Larzelere

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. quest for exascale on a solid foundation. In my last article, I provided a description of the elements of the High Performance Computing (HPC) ecosystem and its importance for advancing and sustaining this strategically important technology. It is good to report that the U.S. exascale program seems to be hitting the full range of ecosystem elements.

As a reminder, the National Strategic Computing Initiative (NSCI) assigned the U.S. Department of Energy (DOE) Office of Science (SC) and the National Nuclear Security Administration (NNSA) to execute a joint program to deliver capable exascale computing that emphasizes sustained performance on relevant applications and analytic computing to support their missions. The overall DOE program is known as the Exascale Computing Initiative (ECI) and is funded by the SC Advanced Scientific Computing Research (ASCR) program and the NNSA Advanced Simulation and Computing (ASC) program. Elements of the ECI include the procurement of exascale class systems and the facility investments in site preparations and non-recurring engineering. Also, ECI includes the Exascale Computing Project (ECP) that will conduct the Research and Development (R&D) in the areas of middleware (software stack), applications, and hardware to ensure that exascale systems will be productively usable to address Office of Science and NNSA missions.

In the area of hardware – the last part of 2017 revealed a number of important developments. First and most visible, is the initial installation of the SC Summit system at Oak Ridge National Laboratory (ORNL) and the NNSA Sierra system at Lawrence Livermore National Laboratory (LLNL). Both systems are being built by IBM using Power9 processors with Nvidia GPU co-processors. The machines will have two Power9 CPUs per system board and will use a Mellenox InfinBand interconnection network.

Beyond that, the architecture of each machine is slightly different. The ORNL Summit machine will use six Nvidia Volta GPUs per two Power9 CPUs on a system board and will use NVLink to connect to 512 GB of memory. The Summit machine will use a combination of air and water cooling. The LLNL Sierra machine will use four Nvidia Voltas and 256 GB of memory connected with the two Power9 CPUs per board. The Sierra machine will use only air cooling. As was reported by HPCwire in November 2017, the peak performance of the Summit machine will be about 200 petaflops and the Sierra machine is expected to be about 125 petaflops.

Installation of both the Summit and Sierra systems is currently underway with about 279 racks (without system boards) and the interconnection network already installed at each lab. Now that IBM has formally released the Power9 processors, the racks will soon start being populated with the boards that contain the CPUs, GPUs and memory. Once that is completed, the labs will start their acceptance testing, which is expected to be finished later in 2018.

Another important piece of news about the DOE exascale program is the clarification of the status of the Argonne National Laboratory (ANL) Aurora machine. This system was part of the collaborative CORAL procurement that also selected the Sierra and Summit machines. The Aurora system is being manufactured by Intel with Cray Inc. acting as the system integrator. The machine was originally scheduled to be an approximately 180 peak petaflops system using the Knights Hill third generation Phi processors. However, during SC17, we learned that Intel is removing the Knights Hill chip from its roadmap. This explains the reason why during the September ASCR Advisory Committee (ASCAC) meeting, Barb Helland, the Associate Director of the ASCR office, announced that the Aurora system would be delayed to 2021 and upgraded to 1,000 petaflops (aka 1 exaflops).

The full details of the revised Aurora system are still under wraps. We have learned that it is going to use “novel” processor technologies, but exactly what that means is unclear. The ASCR program subjected the new Aurora design to an independent outside review. It found, “The hardware choices/design within the node is extremely well thought through. Early projections suggest that the system will support a broad workload.” The review committee even suggested that, “The system as presented is exciting with many novel technology choices that can change the way computing is done.” The Aurora system is in the process of being “re-baselined” by the DOE. Hopefully, once that is complete, we will get a better understanding of the meaning of “novel” technologies. If things go as expected, the changes to Aurora will allow the U.S. to achieve exascale by 2021.

An important, but sometimes overlooked, aspect of the U.S. exascale program is the number of computing systems that are being procured, tested and optimized by the ASCR and ASC programs as part of the buildup to exascale. Other computing systems involved with “pre-exascale” systems include the 8.6 petaflops Mira computer at ANL and the 14 petaflops Cori system at Lawrence Berkeley National Lab (LBNL). The NNSA also has the 14.1 petaflops Trinity system at Los Alamos National Lab (LANL). Up to 20 percent of these precursor machines will serve as testbeds to enable computing science R&D needed to ensure that the U.S. exascale systems will be able to productively address important national security and discovery science objectives.

The last, but certainly not least, bit of hardware news is that the ASCR and ASC programs are expected to start their next computer system procurement processes in early 2018. During her presentation to the U.S. Consortium for the Advancement of Supercomputing (USCAS), Barb Helland told the group that she expects that the Request for Proposals (RFP) will soon be released for the follow-ons to the Summit and Sierra systems. These systems, to be delivered in the 2021-2023 timeframe, are expected to be provide in excess of exaFLOP/s performance. The procurement process to be used will be similar to the CORAL procurement and will be a collaboration between the DOE-SC ASCR and NNSA ASC programs. The ORNL exascale system will be called Frontier and the LLNL system will be known as El Capitan.

2017 also saw significant developments for the people element of the U.S HPC ecosystem. As was previously reported, at last September’s ASCAC meeting, Paul Messina announced that he would be stepping down as the ECP Director on October 1st. Doug Kothe, who was previously the applications development lead, was announced as the new ECP Director. Upon taking the Director job, Kothe with his deputy, Stephen Lee of LANL, instituted a process to review the organization and management of the ECP. At the December ASCAC conference call, Doug reported that the review had been completed and resulted in a number of changes. This included paring down ECP from five to four components (applications development, software technology, hardware and integration, and project management). He also reported that ECP has implemented a more structured management approach that includes a revised work breakdown structure (WBS) and additional milestones, new key performance parameters and risk management approaches. Finally, the new ECP Director reported that they had established an Extended Leadership Team with a number of new faces.

Another important, element of the HPC ecosystem are the people doing the R&D and other work need to keep the ecosystem going. The DOE ECI involves a huge number of people. Last year, there were about 500 researchers who attended the ECP Principle Investigator meeting and there are many more involved in other DOE/NNSA programs and from industry. The ASCR and ASC programs are involved with a number of programs to educate and train future members of the HPC ecosystem. Such programs are the ASCR and ASC co-funded Computational Science Graduate Fellowship (CSGF) and the Early Career Research Program. The NNSA offers similar opportunities. Both the ASCR and ASC programs continue to coordinate with National Science Foundation educational programs to ensure that America’s top computational science talent continues to flow into the ecosystem.

Finally, in addition to people and hardware, the U.S. program continues to develop the software stack (aka middleware) to develop end users’ applications to ensure that exascale will be used productively. Doug Kothe reported that ECP has adopted standard Software Development Kits. These SDKs are designed to support the goal of building a comprehensive, coherent software stack that enables application developers to productively write highly parallel applications that effectively target diverse exascale architectures. Kothe also reported that ECP is making good progress in developing applications software. This includes the implementation of innovative approaches that include Machine Learning to utilize the GPUs that are part of the future exascale computers.

All in all – the last several months of 2017 have set the stage for a very exciting 2018 for the U.S. exascale program. It has been about 5 years since the ORNL Titan supercomputer came onto the stage at #1 on the TOP500 list. Over that time, other more powerful DOE computers have come online (Trinity, Cori, etc.) but they were overshadowed by Chinese and European systems. It remains unclear whether or not the upcoming exascale systems will put the U.S. back on the top of the supercomputing world. However, the recent developments help to reassure the country is not going to give up its computing leadership position without a fight. That is great news because for more than 60 years, the U.S. has sought leadership in high performance computing for the strategic value it provides in the areas of national security, discovery science, energy security, and economic competitiveness.

About the Author

Alex Larzelere is a senior fellow at the U.S. Council on Competitiveness, the president of Larzelere & Associates Consulting and HPCwire’s policy editor. He is currently a technologist, speaker and author on a number of disruptive technologies that include: advanced modeling and simulation; high performance computing; artificial intelligence; the Internet of Things; and additive manufacturing. Alex’s career has included time in federal service (working closely with DOE national labs), private industry, and as founder of a small business. Throughout that time, he led programs that implemented the use of cutting edge advanced computing technologies to enable high resolution, multi-physics simulations of complex physical systems. Alex is the author of “Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI).”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This