Momentum Builds for US Exascale

By Alex R. Larzelere

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. quest for exascale on a solid foundation. In my last article, I provided a description of the elements of the High Performance Computing (HPC) ecosystem and its importance for advancing and sustaining this strategically important technology. It is good to report that the U.S. exascale program seems to be hitting the full range of ecosystem elements.

As a reminder, the National Strategic Computing Initiative (NSCI) assigned the U.S. Department of Energy (DOE) Office of Science (SC) and the National Nuclear Security Administration (NNSA) to execute a joint program to deliver capable exascale computing that emphasizes sustained performance on relevant applications and analytic computing to support their missions. The overall DOE program is known as the Exascale Computing Initiative (ECI) and is funded by the SC Advanced Scientific Computing Research (ASCR) program and the NNSA Advanced Simulation and Computing (ASC) program. Elements of the ECI include the procurement of exascale class systems and the facility investments in site preparations and non-recurring engineering. Also, ECI includes the Exascale Computing Project (ECP) that will conduct the Research and Development (R&D) in the areas of middleware (software stack), applications, and hardware to ensure that exascale systems will be productively usable to address Office of Science and NNSA missions.

In the area of hardware – the last part of 2017 revealed a number of important developments. First and most visible, is the initial installation of the SC Summit system at Oak Ridge National Laboratory (ORNL) and the NNSA Sierra system at Lawrence Livermore National Laboratory (LLNL). Both systems are being built by IBM using Power9 processors with Nvidia GPU co-processors. The machines will have two Power9 CPUs per system board and will use a Mellenox InfinBand interconnection network.

Beyond that, the architecture of each machine is slightly different. The ORNL Summit machine will use six Nvidia Volta GPUs per two Power9 CPUs on a system board and will use NVLink to connect to 512 GB of memory. The Summit machine will use a combination of air and water cooling. The LLNL Sierra machine will use four Nvidia Voltas and 256 GB of memory connected with the two Power9 CPUs per board. The Sierra machine will use only air cooling. As was reported by HPCwire in November 2017, the peak performance of the Summit machine will be about 200 petaflops and the Sierra machine is expected to be about 125 petaflops.

Installation of both the Summit and Sierra systems is currently underway with about 279 racks (without system boards) and the interconnection network already installed at each lab. Now that IBM has formally released the Power9 processors, the racks will soon start being populated with the boards that contain the CPUs, GPUs and memory. Once that is completed, the labs will start their acceptance testing, which is expected to be finished later in 2018.

Another important piece of news about the DOE exascale program is the clarification of the status of the Argonne National Laboratory (ANL) Aurora machine. This system was part of the collaborative CORAL procurement that also selected the Sierra and Summit machines. The Aurora system is being manufactured by Intel with Cray Inc. acting as the system integrator. The machine was originally scheduled to be an approximately 180 peak petaflops system using the Knights Hill third generation Phi processors. However, during SC17, we learned that Intel is removing the Knights Hill chip from its roadmap. This explains the reason why during the September ASCR Advisory Committee (ASCAC) meeting, Barb Helland, the Associate Director of the ASCR office, announced that the Aurora system would be delayed to 2021 and upgraded to 1,000 petaflops (aka 1 exaflops).

The full details of the revised Aurora system are still under wraps. We have learned that it is going to use “novel” processor technologies, but exactly what that means is unclear. The ASCR program subjected the new Aurora design to an independent outside review. It found, “The hardware choices/design within the node is extremely well thought through. Early projections suggest that the system will support a broad workload.” The review committee even suggested that, “The system as presented is exciting with many novel technology choices that can change the way computing is done.” The Aurora system is in the process of being “re-baselined” by the DOE. Hopefully, once that is complete, we will get a better understanding of the meaning of “novel” technologies. If things go as expected, the changes to Aurora will allow the U.S. to achieve exascale by 2021.

An important, but sometimes overlooked, aspect of the U.S. exascale program is the number of computing systems that are being procured, tested and optimized by the ASCR and ASC programs as part of the buildup to exascale. Other computing systems involved with “pre-exascale” systems include the 8.6 petaflops Mira computer at ANL and the 14 petaflops Cori system at Lawrence Berkeley National Lab (LBNL). The NNSA also has the 14.1 petaflops Trinity system at Los Alamos National Lab (LANL). Up to 20 percent of these precursor machines will serve as testbeds to enable computing science R&D needed to ensure that the U.S. exascale systems will be able to productively address important national security and discovery science objectives.

The last, but certainly not least, bit of hardware news is that the ASCR and ASC programs are expected to start their next computer system procurement processes in early 2018. During her presentation to the U.S. Consortium for the Advancement of Supercomputing (USCAS), Barb Helland told the group that she expects that the Request for Proposals (RFP) will soon be released for the follow-ons to the Summit and Sierra systems. These systems, to be delivered in the 2021-2023 timeframe, are expected to be provide in excess of exaFLOP/s performance. The procurement process to be used will be similar to the CORAL procurement and will be a collaboration between the DOE-SC ASCR and NNSA ASC programs. The ORNL exascale system will be called Frontier and the LLNL system will be known as El Capitan.

2017 also saw significant developments for the people element of the U.S HPC ecosystem. As was previously reported, at last September’s ASCAC meeting, Paul Messina announced that he would be stepping down as the ECP Director on October 1st. Doug Kothe, who was previously the applications development lead, was announced as the new ECP Director. Upon taking the Director job, Kothe with his deputy, Stephen Lee of LANL, instituted a process to review the organization and management of the ECP. At the December ASCAC conference call, Doug reported that the review had been completed and resulted in a number of changes. This included paring down ECP from five to four components (applications development, software technology, hardware and integration, and project management). He also reported that ECP has implemented a more structured management approach that includes a revised work breakdown structure (WBS) and additional milestones, new key performance parameters and risk management approaches. Finally, the new ECP Director reported that they had established an Extended Leadership Team with a number of new faces.

Another important, element of the HPC ecosystem are the people doing the R&D and other work need to keep the ecosystem going. The DOE ECI involves a huge number of people. Last year, there were about 500 researchers who attended the ECP Principle Investigator meeting and there are many more involved in other DOE/NNSA programs and from industry. The ASCR and ASC programs are involved with a number of programs to educate and train future members of the HPC ecosystem. Such programs are the ASCR and ASC co-funded Computational Science Graduate Fellowship (CSGF) and the Early Career Research Program. The NNSA offers similar opportunities. Both the ASCR and ASC programs continue to coordinate with National Science Foundation educational programs to ensure that America’s top computational science talent continues to flow into the ecosystem.

Finally, in addition to people and hardware, the U.S. program continues to develop the software stack (aka middleware) to develop end users’ applications to ensure that exascale will be used productively. Doug Kothe reported that ECP has adopted standard Software Development Kits. These SDKs are designed to support the goal of building a comprehensive, coherent software stack that enables application developers to productively write highly parallel applications that effectively target diverse exascale architectures. Kothe also reported that ECP is making good progress in developing applications software. This includes the implementation of innovative approaches that include Machine Learning to utilize the GPUs that are part of the future exascale computers.

All in all – the last several months of 2017 have set the stage for a very exciting 2018 for the U.S. exascale program. It has been about 5 years since the ORNL Titan supercomputer came onto the stage at #1 on the TOP500 list. Over that time, other more powerful DOE computers have come online (Trinity, Cori, etc.) but they were overshadowed by Chinese and European systems. It remains unclear whether or not the upcoming exascale systems will put the U.S. back on the top of the supercomputing world. However, the recent developments help to reassure the country is not going to give up its computing leadership position without a fight. That is great news because for more than 60 years, the U.S. has sought leadership in high performance computing for the strategic value it provides in the areas of national security, discovery science, energy security, and economic competitiveness.

About the Author

Alex Larzelere is a senior fellow at the U.S. Council on Competitiveness, the president of Larzelere & Associates Consulting and HPCwire’s policy editor. He is currently a technologist, speaker and author on a number of disruptive technologies that include: advanced modeling and simulation; high performance computing; artificial intelligence; the Internet of Things; and additive manufacturing. Alex’s career has included time in federal service (working closely with DOE national labs), private industry, and as founder of a small business. Throughout that time, he led programs that implemented the use of cutting edge advanced computing technologies to enable high resolution, multi-physics simulations of complex physical systems. Alex is the author of “Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI).”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this year and double again by the end of next year as it transiti Read more…

By John Russell

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this Read more…

By John Russell

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This