How Meltdown and Spectre Patches Will Affect HPC Workloads

By Rosemary Francis

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call from user space into the operating system much more expensive, so I/O intensive applications are likely to be the worst hit. What does this really mean for HPC workloads?

Optimisation has always been important to HPC, but the new patches have moved the goal posts. Profiling applications and how they access data on disk and over the network is going to be key to getting a handle on what the worst problems are going to be. Losing a third of your compute overhead is an understandably scary prospect, but this doesn’t have to be a thoroughly lose-lose situation.

Consider the following aspects of your workloads now to mitigate potential performance damage as much as possible.

1.     Our workflows use third-party tools – there’s nothing I can do, right?

It’s common to use a mix of third-party and in-house tools. Optimising in-house applications is a resourcing issue, but possible. When third-party tools have performance problems, you are often on your own, even if they are open source.

It is, however, still worth investigating performance drops of third-party workflows. As well as being able to feed data back to your vendor or to the user community, there are always changes you can make to the way a program runs that affects the I/O. For example, do you use environment variables to configure that application? Long PATH variables and similar settings can cause applications to trawl the file system with sequences of failed open() or stat() calls many times in a single execution.

These failed I/O calls or distributed accesses cause problems for shared file systems even before you have installed the KPTI patch. Once the patch has been applied it’s likely that the affect of those unnecessary meta data operations will increase for the program performing them as well as for the shared file system struggling under the load.

So even if you have a workflow with just a wrapper script to launch it and a single third-party binary that won’t ever be updated, it is still a very good idea to work out where you are spending your time. Even something as simple as moving temporary files from shared to local storage is likely to give you a win.

2.     Genome pipelines and other fans of small files

Genome pipelines are well known for using a lot of small files to map DNA segments against a reference genome. Other HPC applications in oil and gas, EDA and finance sometimes do the same. Part of the reason for this is a need to honour legacy working practices because in science it can be hard to prove the validity of your work if it is using entirely new software, but it’s also a limitation of the algorithms used in these applications.

Small files necessarily mean small I/O and lots of meta data, but worse than that, often small files are accessed in smaller chunks, further exacerbating the problem. Why is this a problem? Let’s assume that small I/O is anything under 32KB, depending on the architecture of your system. Files under 4KB can be easily written off as an unsolvable problem, but if you access the data in less than 4KB blocks then there is definitely scope for the problem to be a lot worse than it needs to be. Closing a file after every small write or checking the existence of every file before opening it will also magnify the performance impact of the security patches.

Small I/O isn’t limited to applications that use small files. Older libraries and code that hasn’t been profiled will often use system calls that perform small reads and writes. Sometimes gigabytes of data are read or written one byte at a time. This behaviour is very common in almost all compute environments and will be catastrophic for local performance as well as any shared file system or database.

3.     Will the performance drop caused by the patches impact local or shared storage the most?

Reports so far of the impact of the patches on shared file systems have not been good. In time, those who maintain the file system will be able to make some performance improvements based on the new compute landscape, but no one is going to be able to escape the performance drop entirely. Shared storage is an important part of most HPC clusters and cloud infrastructure. When accessing anything remotely there will be a performance hit over local storage, but the KPTI patch will be hitting performance at both ends.

Some workloads will be slowed down mainly by their own behaviour and I/O patterns. This is good news for the shared file system because anything that throttles accesses gives the file system a bit more time to keep up.

Unfortunately, I/O intensive workloads that have bad local performance are also likely to be those hitting the file system the hardest and will be the worst affected by any slow down of the file system. The only way to know the impact of the patch on your cluster and workloads is to try it and measure it; the complexity of modern HPC systems means that an effect on one resource cannot predict the performance of another.

4.     My application doesn’t do that much I/O so do I still have to worry?

Much has been made of the effect the KPTI patches will have on I/O performance, but the impact will be seen on all system calls. This means calls such as gettimeofday() will get more expensive. Applications with strict timing constraints will make lots of such calls and may well have poorly constructed timing constraints broken by the new delays in accessing even small amounts of data.

Ask yourself, does you program really need that fancy progress bar? You could be paying a lot more for features like this in the future.

5.    Is MPI I/O better or worse?

HPC applications don’t just do POSIX I/O: MPI libraries are a popular way of sharing data and coordinating applications across many thousands of compute ranks. All MPI libraries use POSIX I/O underneath the hood, perhaps not a surprise to many, but what will surprise some is the way they do it.

MPI libraries have evolved over time and seemingly similar calls can have very different implementations with varying reliance on small system calls. We are back to discussing small I/O because high-level constructs such as tables and matrices of data are often accessed with very small reads and writes.

The good news is that many MPI libraries are binary compatible for the most part, so changing the library once a performance problem has been identified is not as difficult as optimising other types of I/O, but it is something that you may not have control over. Artificial benchmarks such as IOR that let you compare MPI libraries are unlikely to give you much insight into the real impact of the KPTI patch because real workloads are so different from the orderly I/O that those benchmarks stress. Again, the only way to find out where time is being spent is to profile a real application.

6.     Can I escape the problem by moving my workloads to the cloud?

Unfortunately, virtualised workloads are still affected by the vulnerability and need to be patched. That goes for containerised workloads as well.

Moving applications to the cloud usually involves some kind of re-architecture to reduce the reliance on shared storage and to take advantage of the high-performance and low-cost storage options available. Getting a handle on how your applications use storage and where their dependencies are is part of this process, so optimising for the KPTI patch is work that can almost come for free as part of the efforts to embrace the future. Some I/O patterns will be worse in the cloud and some will be better, but that was true before anyone knew about Meltdown and Spectre.

So all in all, HPC applications are going to be affected by the patches in varying degrees. The cheerful news is that a lot of the impact on performance can be mitigated by optimisation efforts where the resources are available. Using third-party tools and libraries doesn’t render you helpless – there still might be room for easy wins in performance.

Let’s hope that the situation doesn’t become even more complicated as the HPC industry works to come with more solutions. Given the complexity of most HPC workloads and systems already, anything that can be done to simplify and optimise systems rather than add layers of fixes will surely be good for future growth.

About the Author

Dr. Rosemary Francis is CEO and founder of Ellexus, the I/O profiling company (www.ellexus.com). Ellexus makes application profiling and monitoring tools that can be run on a live compute cluster to protect from rogue jobs and noisy neighbours, make cloud migration easy and allow a cluster to be scaled rapidly. The system- and storage-agnostic tools provide end-to-end visibility into exactly what applications and users are up to. We don’t just give you data about what your programs are doing; our tools include expertise on what is going wrong and how you can fix it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This