How Meltdown and Spectre Patches Will Affect HPC Workloads

By Rosemary Francis

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call from user space into the operating system much more expensive, so I/O intensive applications are likely to be the worst hit. What does this really mean for HPC workloads?

Optimisation has always been important to HPC, but the new patches have moved the goal posts. Profiling applications and how they access data on disk and over the network is going to be key to getting a handle on what the worst problems are going to be. Losing a third of your compute overhead is an understandably scary prospect, but this doesn’t have to be a thoroughly lose-lose situation.

Consider the following aspects of your workloads now to mitigate potential performance damage as much as possible.

1.     Our workflows use third-party tools – there’s nothing I can do, right?

It’s common to use a mix of third-party and in-house tools. Optimising in-house applications is a resourcing issue, but possible. When third-party tools have performance problems, you are often on your own, even if they are open source.

It is, however, still worth investigating performance drops of third-party workflows. As well as being able to feed data back to your vendor or to the user community, there are always changes you can make to the way a program runs that affects the I/O. For example, do you use environment variables to configure that application? Long PATH variables and similar settings can cause applications to trawl the file system with sequences of failed open() or stat() calls many times in a single execution.

These failed I/O calls or distributed accesses cause problems for shared file systems even before you have installed the KPTI patch. Once the patch has been applied it’s likely that the affect of those unnecessary meta data operations will increase for the program performing them as well as for the shared file system struggling under the load.

So even if you have a workflow with just a wrapper script to launch it and a single third-party binary that won’t ever be updated, it is still a very good idea to work out where you are spending your time. Even something as simple as moving temporary files from shared to local storage is likely to give you a win.

2.     Genome pipelines and other fans of small files

Genome pipelines are well known for using a lot of small files to map DNA segments against a reference genome. Other HPC applications in oil and gas, EDA and finance sometimes do the same. Part of the reason for this is a need to honour legacy working practices because in science it can be hard to prove the validity of your work if it is using entirely new software, but it’s also a limitation of the algorithms used in these applications.

Small files necessarily mean small I/O and lots of meta data, but worse than that, often small files are accessed in smaller chunks, further exacerbating the problem. Why is this a problem? Let’s assume that small I/O is anything under 32KB, depending on the architecture of your system. Files under 4KB can be easily written off as an unsolvable problem, but if you access the data in less than 4KB blocks then there is definitely scope for the problem to be a lot worse than it needs to be. Closing a file after every small write or checking the existence of every file before opening it will also magnify the performance impact of the security patches.

Small I/O isn’t limited to applications that use small files. Older libraries and code that hasn’t been profiled will often use system calls that perform small reads and writes. Sometimes gigabytes of data are read or written one byte at a time. This behaviour is very common in almost all compute environments and will be catastrophic for local performance as well as any shared file system or database.

3.     Will the performance drop caused by the patches impact local or shared storage the most?

Reports so far of the impact of the patches on shared file systems have not been good. In time, those who maintain the file system will be able to make some performance improvements based on the new compute landscape, but no one is going to be able to escape the performance drop entirely. Shared storage is an important part of most HPC clusters and cloud infrastructure. When accessing anything remotely there will be a performance hit over local storage, but the KPTI patch will be hitting performance at both ends.

Some workloads will be slowed down mainly by their own behaviour and I/O patterns. This is good news for the shared file system because anything that throttles accesses gives the file system a bit more time to keep up.

Unfortunately, I/O intensive workloads that have bad local performance are also likely to be those hitting the file system the hardest and will be the worst affected by any slow down of the file system. The only way to know the impact of the patch on your cluster and workloads is to try it and measure it; the complexity of modern HPC systems means that an effect on one resource cannot predict the performance of another.

4.     My application doesn’t do that much I/O so do I still have to worry?

Much has been made of the effect the KPTI patches will have on I/O performance, but the impact will be seen on all system calls. This means calls such as gettimeofday() will get more expensive. Applications with strict timing constraints will make lots of such calls and may well have poorly constructed timing constraints broken by the new delays in accessing even small amounts of data.

Ask yourself, does you program really need that fancy progress bar? You could be paying a lot more for features like this in the future.

5.    Is MPI I/O better or worse?

HPC applications don’t just do POSIX I/O: MPI libraries are a popular way of sharing data and coordinating applications across many thousands of compute ranks. All MPI libraries use POSIX I/O underneath the hood, perhaps not a surprise to many, but what will surprise some is the way they do it.

MPI libraries have evolved over time and seemingly similar calls can have very different implementations with varying reliance on small system calls. We are back to discussing small I/O because high-level constructs such as tables and matrices of data are often accessed with very small reads and writes.

The good news is that many MPI libraries are binary compatible for the most part, so changing the library once a performance problem has been identified is not as difficult as optimising other types of I/O, but it is something that you may not have control over. Artificial benchmarks such as IOR that let you compare MPI libraries are unlikely to give you much insight into the real impact of the KPTI patch because real workloads are so different from the orderly I/O that those benchmarks stress. Again, the only way to find out where time is being spent is to profile a real application.

6.     Can I escape the problem by moving my workloads to the cloud?

Unfortunately, virtualised workloads are still affected by the vulnerability and need to be patched. That goes for containerised workloads as well.

Moving applications to the cloud usually involves some kind of re-architecture to reduce the reliance on shared storage and to take advantage of the high-performance and low-cost storage options available. Getting a handle on how your applications use storage and where their dependencies are is part of this process, so optimising for the KPTI patch is work that can almost come for free as part of the efforts to embrace the future. Some I/O patterns will be worse in the cloud and some will be better, but that was true before anyone knew about Meltdown and Spectre.

So all in all, HPC applications are going to be affected by the patches in varying degrees. The cheerful news is that a lot of the impact on performance can be mitigated by optimisation efforts where the resources are available. Using third-party tools and libraries doesn’t render you helpless – there still might be room for easy wins in performance.

Let’s hope that the situation doesn’t become even more complicated as the HPC industry works to come with more solutions. Given the complexity of most HPC workloads and systems already, anything that can be done to simplify and optimise systems rather than add layers of fixes will surely be good for future growth.

About the Author

Dr. Rosemary Francis is CEO and founder of Ellexus, the I/O profiling company (www.ellexus.com). Ellexus makes application profiling and monitoring tools that can be run on a live compute cluster to protect from rogue jobs and noisy neighbours, make cloud migration easy and allow a cluster to be scaled rapidly. The system- and storage-agnostic tools provide end-to-end visibility into exactly what applications and users are up to. We don’t just give you data about what your programs are doing; our tools include expertise on what is going wrong and how you can fix it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire