A Close-Up Look at the World’s Largest HPC System for Commercial Research

By Doug Black

January 14, 2018

For decades, high performance computing has driven more accurate, detailed and faster seismic exploration. As oil and gas have becomes harder to find, HPC has been essential to keeping energy supplies flowing – to the point where new discovery and extraction techniques have driven up supply, driving energy prices down and making the United States a net energy exporter.

Of the companies in the sector, BP is notable for its aggressive embrace of HPC. The team of seismic researchers and computer scientists at the company’s Center for High-Performance Computing (CHPC), Houston, has quadrupled its computing power and doubled its storage capacity since it opened in 2013. The CHPC recently announced a new HPE system that more than doubles the center’s compute capabilities (from four to nine petaflops peak), making it the most powerful supercomputer in the world used for commercial research, according to industry watcher Hyperion Research.

BP’s compute capabilities led to the discovery last year of potential oil reserves estimated at 200 million barrels located at the company’s “Atlantis” drill field in the Gulf of Mexico. Whether or when BP will extract those reserves hasn’t been decided, but the finding demonstrates the increasing power and sophistication of HPC hardware and software for finding increasingly elusive energy reserves. The new Atlantis reservoir is a case in point: it’s under 7,000 feet of water and 25,000 feet below the ocean floor – about seven miles.

BP’s HPE Apollo 6000-based supercomputers reveal a balance between compute power and memory capacity. The CHPC has two HPE systems, one with 2,700 Apollo 6000 nodes equipped with Intel “Haswell” processors; its new system has 2,700 Apollo 6000 nodes with updated Intel Knights Landing chips, along with a 100 GB low latency network, boosting BP’s peak processing speed from 4 petaflops to 9 petaflops.  Equipped with High Bandwidth Memory (HBM), the system has a total active memory of 1,140 TB, along with 30 PB of storage.   The Knights Landing-based system is 18 times more powerful than the world’s fastest supercomputer in 2007.

BP’s Keith Gray

“This is a new architecture,” Keith Gray, BP’s technical director for supercomputing, told EnterpriseTech of the Knights Landing-based system.  “The computer scientists on our team worked closely with Intel and HPE to optimize our codes. Each Knights Landing processor has 16GB of memory glued on top of the processor, and that memory is five times faster than the standard. We worked with Intel to understand the optimal configuration for this, we spent close to a year in preparation for the delivery of the Knights Landing system.”

Helping BP find the potential new reserve at the Atlantis field is a proprietary algorithm using Full Waveform Inversion (FWI) technology. Gray said distributing that capability across the enormous HPE cluster is a major technical challenge.

“The problems that we’re working on continually get so large that we now have software that breaks the problem into their chunks that can be solved on a single node,” Gray said. “Our computational scientists and software engineers have written tools that distribute the work across the whole of the cluster and then sum it together to create the final output volume. There will be times we’ll be using more than 80,000 cores on a single MPI process.”

Among the geological challenges encountered at the Atlantis field are massive salt “canopies” overlaying the oil reservoir. Full Waveform Inversion is used to overcome the obstruction and distortion of seismic images caused by the canopies. FWI uses advanced algorithms to iteratively refine models of the subsurface by generating seismic wave simulations and adjusting the values of subsurface properties based on the quality of the match between the simulated and recorded data. According to BP, FWI has identified an estimated 1 billion barrels of oil across the company’s four hubs in the Gulf.

Wave Form Inversion showing a salt canopy

“We’ll come in with potentially terabytes of data for a seismic acquisition, the largest will exceed a petabyte,” Gray said. “We’ll process it, look at it in many dimensions and it is common for these research steps to create 3 to 5 PB of intermediate results that we will then analyze to put together a volume of the earth.”

The ongoing identification of new energy reserves defies predictions dating back to the 1970s that the world would run out of oil within a few decades.

“The key message is this: as we create new technical capabilities, as we open up new areas, we’re able to produce from more challenging fields,” said Gray, “We’ve been able to continue to deliver energy needed for the world, even though there were skeptics that would have claimed we were reaching a peak of energy production and we wouldn’t be able to continue to meet the requirements.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This