SRC Spends $200M on University Research Centers

By John Russell

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communications, nanotechnology, and more. It’s not a bad way to begin 2018 for the winning institutions which include Notre Dame University, University of Michigan, University of Virginia, Carnegie Mellon University, Purdue University, and UC Santa Barbara.

SRC’s JUMP (Joint University Microelectronics Program) is a collaborative network of research centers sponsored by U.S. industry participants and DARPA. As described in the SRC web site, “[JUMP’s] mission is to enable the continued pace of growth of the microelectronics industry with discoveries which release the evolutionary constraints of traditional semiconductor technology development. JUMP research, guided by the university center directors, tackles fundamental physical problems and forges a nationwide effort to keep the United States and its technology firms at the forefront of the global microelectronics revolution.”

The six projects, funded over five years, were launched on January 1st and are listed below with short descriptions. Links to press releases from each center are at the end of the article:

  • ASCENT (Applications and Systems driven Center for Energy-Efficient Integrated NanoTechnologies at Notre Dame). “ASCENT focuses on demonstration of foundational material synthesis routes and device technologies, novel heterogeneous integration (package and monolithic) schemes to support the next era of functional hyper-scaling. The mission is to transcend the current limitations of high-performance transistors confined to a single planar layer of integrated circuit by pioneering vertical monolithic integration of multiple interleaved layers of logic and memory.”
  • ADA (Applications Driving Architectures Center at University of Michigan). “[ADA will drive] system design innovation by drawing on opportunities in application driven architecture and system-driven technology advances, with support from agile system design frameworks that encompass programming languages to implementation technologies. The center’s innovative solutions will be evaluated and quantified against a common set of benchmarks, which will also be expanded as part of the center efforts. These benchmarks will be initially derived from core computational aspects of two application domains: visual computing and natural language processing.”
  • Kevin Skadron, University of Virginia

    CRISP (Center for Research on Intelligent Storage and Processing-in-memory at University of Virginia). “Certain computations are just not feasible right now due to the huge amounts of data and the memory wall,” says Kevin Skadron, who chairs UVA Engineering’s Department of Computer Science and leads the new center. “Solving these challenges and enabling the next generation of data-intensive applications requires computing to be embedded in and around the data, creating ‘intelligent’ memory and storage architectures that do as much of the computing as possible as close to the bits as possible.”

  • CONIX (Computing On Network Infrastructure for Pervasive Perception, Cognition, and Action at Carnegie Mellon University). “CONIX will create the architecture for networked computing that lies between edge devices and the cloud. The challenge is to build this substrate so that future applications that are crucial to IoT can be hosted with performance, security, robustness, and privacy guarantees.”
  • CBRIC (Center for Brain-inspired Computing Enabling Autonomous Intelligence at Purdue University). Charged with delivering key advances in cognitive computing, with the goal of enabling a new generation of autonomous intelligent systems, “CBRIC will address these challenges through synergistic exploration of Neuro-inspired Algorithms and Theory, Neuromorphic Hardware Fabrics, Distributed Intelligence, and Application Drivers.”
  • ComSenTer (Center for Converged TeraHertz Communications and Sensing at UCSB). ComSenTer will develop the technologies for a future cellular infrastructure using hubs with massive spatial multiplexing, providing 1-100Gb/s to the end user, and, with 100-1000 simultaneous independently-modulated beams, aggregate hubs capacities in the 10’s of Tb/s. Backhaul for this future cellular infrastructure will be a mix of optical links and Tb/s-capacity point-point massive MIMO links.”

Links to individual press releases/program descriptions:

ASCENT, Notre Dame: https://www.src.org/newsroom/press-release/2018/921/

ADA, University of Michigan: https://www.src.org/newsroom/press-release/2018/922/

CRISP, University of Virginia: https://www.src.org/newsroom/press-release/2018/920/

CONIX, Carnegie Mellon: https://www.prnewswire.com/news-releases/new-center-headquartered-at-carnegie-mellon-university-will-build-smarter-networks-to-connect-edge-devices-to-the-cloud-300582210.html

CBRIC, Purdue: https://www.src.org/newsroom/press-release/2018/919/

ComSentTer, UCSB: https://www.src.org/program/jump/comsenter/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first half of 2019. The new machine is intended to replace the eig Read more…

By John Russell

What’s New in HPC Research: October (Part 2)

October 15, 2018

In this bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back on the firs Read more…

By Oliver Peckham

Building a Diverse Workforce for Next-Generation Analytics and AI

October 15, 2018

High-performance computing (HPC) has a well-known diversity problem, and groups such as Women in HPC are working to address it. But while the diversity challenge crosses the science and technology spectrum, it is especia Read more…

By Jan Rowell

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas monster, which would be a first, but at a spec'd 250 single-pre Read more…

By Tiffany Trader

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

DDN, Nvidia Blueprint Unified AI Appliance with Up to 9 DGX-1s

October 4, 2018

Continuing the roll-out of the A3I (Accelerated, Any-Scale AI) storage strategy kicked off in June, DDN today announced a new set of solutions that combine the Read more…

By Tiffany Trader

D-Wave Is Latest to Offer Quantum Cloud Platform

October 4, 2018

D-Wave Systems today launched its cloud platform for quantum computing – Leap – which combines a development environment, community features, and "real-time Read more…

By John Russell

Rise of the Machines – Clarion Call on AI by U.S. House Subcommittee

October 2, 2018

Last week, the top U.S. House of Representatives subcommittee on IT weighed in on AI with a new report - Rise of the Machines: Artificial Intelligence and its Growing Impact on U.S. Policy. Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This