Fostering Lustre Advancement Through Development and Contributions

By Carlos Aoki Thomaz

January 17, 2018

In this contributed feature, Carlos Aoki Thomaz, DDN senior product manager, provides perspective on the path of Lustre since Intel ended its commercially supported version last April and open sourced its Lustre activities. In a technically-detailed accounting, Thomaz spells out a number of strategic investments DDN is making in Lustre’s development.

Six months after organizational changes at Intel’s High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre development. Customers who have adopted the technology as their main parallel file system now have a clearer picture of what the future holds for the world’s most utilized parallel file system. Lustre remains strong and will continue to dominate the persistent parallel file system arena, at least for the foreseeable future.

Carlos Aoki Thomaz, Senior Product Manager at DDN

The new Lustre development and adoption strategy has turned out to be surprisingly simple, and more clear and consistent than anticipated. Like the old Whamcloud days, Lustre development has returned to a single code stream, thereby avoiding confusion and lack of discernment regarding different distributions, features, capabilities, and source code differentiation. Quietly released in July 2017, 2.10 is the LTS (Long Term Support) release of Lustre that should be the mainstream version through mid to early 2019.

As a major contributor to the Lustre community, DataDirect Networks (DDN) announced in 2016 that all of its Lustre features will be merged over time into the Lustre master branch. This convergence gives the entire community transparent access to the code, reducing the overhead of code development management and better aligning with the new features released in Lustre 2.10.

A very sophisticated set of features has been announced on Lustre 2.10 such as Progressive File Layouts (PFL), Project Quotas, IB Multi-rail and NRS Delay policy. Progressive file layouts allow system administrators and users to adjust file layouts, and how a file is stripped – the number of stripes and stripe block size now may vary according to the file size. There are several use cases that would take huge advantage leveraging PFL while simplifying the storage administration in the process. The storage administrator could define standard default layouts for different types of files, minimizing the need of users to manipulate file layouts by themselves (although the user is still able to define their own layouts). With the increasing utilization of flash technologies in a hybrid parallel file system (SSDs and NVMe devices mixed with standard rotational drives) it is now possible to create sophisticated mechanisms to optimize data location using PFL and OST pools.

Another feature, possibly the most latent need among the current Lustre users, is the Project Quotas. Project Quotas allows quota definition per “Project” which could be, for example, associated with a specific directory. Previously, Lustre only allowed standard POSIX User and group quotas. With Project Quotas we move one step ahead on the realm of managing spaces among users, groups and projects and planning for capacity and growth. Project Quota adds space accounting and enforcements of capacity utilization based on OSTs, sub-directories and file-sets, providing the granularity needed to manage several different use cases.

Some have asked about the impact of performance related to Project Quotas. Results of various tests have been impressive and encouraging, showing no degradation compared to the standard POSIX quota. Project Quotas is a feature available for Lustre running with a LDISKFS backend.

Although the feature has been only landed on Lustre 2.10, as the developer responsible for this feature, DDN has backported it into its Exascaler 3.2 (based on Lustre 2.7). Historically speaking, the latest and greatest version of Lustre usually brings the most advanced technologies with a price to pay, which is the un-tested and unproven chunk of codes that usually require a few cycles to stabilize. Since Project Quotas is a need for a huge range of customers that are not ready to move to Lustre 2.10 currently, Lustre 2.7 users can get the ability to run Project Quotas and get full support for it. In the case of customers running Project Quotas on Lustre 2.7, once they decide to upgrade to Lustre 2.10, data will be totally preserved (note that any users going from Lustre versions prior to 2.7, to Lustre 2.10 and activating Project Quotas require a reformat of the file system).

LNET IB Multi Rail allows users to take advantage of multiple infiniBand adapters, aggregating the bandwidth for Lustre LNET. This technique is widely used by Ethernet users through Ethernet Bonding. InfiniBand users were previously unable to “bond” interfaces and they were somehow limited to the performance of a single IB card. There was a need for increased bandwidth, especially on the client side. New architectures, such as HPE UV, have multiple sockets and a huge amount of memory capable to run multiple and much larger compute jobs. Those scenarios bring an unbalanced CPU/MEMORY to IO ratio, where even an IB EDR running 100Gbps may turn into a bottleneck. IB Multi Rail leverages Lustre on larger SMP like nodes, aggregating network bandwidth performance and proving a balanced CPU/Memory to IO ratio. On the server side, the biggest advantage is on the high availability capabilities. Having more than one IB link provides redundancy, avoiding scenarios that trigger server failover due an IB failure. Now in network failure scenarios the failures and their recovery are handled transparently, without compromising on performance.

NRS delay policy, which simulates high server load as way of validating the resilience of Lustre under load, is another feature introduced in Lustre 2.10. This is one valid way to perform fault injection and load simulation, usually very important during stabilization phases, performance characterization and overall debugging techniques.

Along with these recently announced features, a new approach has been proposed for Lustre’s policy engine (LiPE), designed to reduce installation and deployment complexity while delivering significantly faster results when executing and managing storage policies. LiPE relies on a set of components that allows the engine to:

  • Scan Lustre metadata targets (MDTs) quickly,
  • Create an in-memory map of the file system’s objects, and
  • Implement data management policies based on that mapped information.

This approach would allow users to define policies that trigger data automation via Lustre HSM hooks or external data management (copy tools, for example) mechanisms.

In the next stage of development, LiPE may be integrated with a File Heat Map mechanism for more automated and transparent data management, resulting in a better utilization of parallel storage infrastructure.

In regard to Lustre performance, a new initiative within the community is investigating the implementation of high-level tools, possibly at the user level, that would improve utilization and configuration of Lustre Quality of Service (QoS). In support of those efforts, a new QoS approach has been developed that is based on the Token Bucket Filter algorithm on the OST level. It allows system administrators to define the maximum number of RPCs to be issued by a user/group or job ID to a given OST. Throttling performance provides I/O control and bandwidth reservation that can guarantee that higher priority jobs run in a more predictable time, avoiding performance variations due to I/O delays.

In keeping with new HPC trends, a tremendous amount of work has also been invested in the integration of Lustre with Linux container-based workloads, providing native Lustre file system capabilities within containers, support for new kernel and specialized Artificial Intelligence and Machine Learning appliances.

2017 was a productive year for Lustre that showcased a very active and growing Lustre community and that positioned Lustre as the “go to” choice for many high-performance computing organizations and data centers. Moving into 2018, look for Lustre roadmaps to solidify this position with enhanced security, performance, Remote Access Service (RAS), and data management capabilities, as well as the addition of more enterprise-class features.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This