New Blueprint for Converging HPC, Big Data

By John Russell

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), William Gropp (National Center for Supercomputing Applications), and Thomas Schulthess (Swiss National Supercomputing Centre), among others, has issued a comprehensive Big Data and Extreme-Scale Computing Pathways to Convergence Report. Not surprisingly it’s a large work not easily plumbed in a single sitting.

Convergence – harmonizing computational infrastructures to accommodate HPC and big data – isn’t a new topic. Recently, big data’s close cousin, machine learning, has become part of the discussion. Moreover, the accompanying rise of cyberinfrastructure as a dominant force in science computing has complicated convergence efforts.

The central premise of this study is that a ‘data-driven’ upheaval is exacerbating divisions – technical, cultural, political, economic – in the cyberecosystem of science. The report tackles in some depth a narrower slice of the problem. Big data, say the authors, has caused or worsened two ‘paradigm splits’: 1) one between the traditional ‘HPC and High-end Data Analysis (HDA)’ and 2) another between ‘stateless networks and stateful services’ provided by end systems. The report lays out a roadmap for mending these fissures.

 

This snippet from the report’s executive summary does a nice job of summing up the challenge:

“Looking toward the future of cyberinfrastructure for science and engineering through the lens of these two bifurcations made it clear to the BDEC community that, in the era of Big Data, the most critical problems involve the logistics of wide-area, multistage workflows—the diverse patterns of when, where, and how data is to be produced, transformed, shared, and analyzed. Consequently, the challenges involved in codesigning software infrastructure for science have to be reframed to fully take account of the diversity of workflow patterns that different application communities want to create. For the HPC community, all the imposing design and development issues of creating an exascale-capable software stack remain; but the supercomputers that need this stack must now be viewed as the nodes (perhaps the most important nodes) in the very large network of computing resources required to process and explore rivers of data flooding in from multiple sources.”

There’s a lot to digest here, including a fair amount of technical guidance. Issued at the end of 2017, the report is the result of workshops held in the U.S. (2013), Japan (2014), Spain (2015), Germany (2016), and China (2017); it grew out of prior efforts of the International Exascale Software Project (IESP). Descriptions and results of the five workshops (agendas, white papers, presentations, attendee lists) are available at the BDEC site (http://www.exascale.org/bdec/).

Jack Dongarra

Commenting on the work, Dongarra said, “Computing is at a profound inflection point, economically and technically. The end of Dennard scaling and its implications for continuing semiconductor-design advances, the shift to mobile and cloud computing, the explosive growth of scientific, business, government, and consumer data and opportunities for data analytics and machine learning, and the continuing need for more-powerful computing systems to advance science and engineering are the context for the debate over the future of exascale computing and big data analysis.”

The broad hope is that the ideas presented in the report will guide community efforts. Dongarra emphasized “High-end data analytics (big data) and high-end computing (exascale) are both essential elements of an integrated computing research-and-development agenda; neither should be sacrificed or minimized to advance the other.” Shown below are typical differences in the BDEC software ecosystem.

 

There’s too much in the report to adequately cover here. Here are the report’s summary recommendations:

“Our major, global recommendation is to address the basic problem of the two paradigm splits: the HPC/HDA software ecosystem split and the wide area data logistics split. For this to be achieved, there is a need for new standards that will govern the interoperability between data and compute, based on a new, common and open Distributed Services Platform (DSP), that offers programmable access to shared processing, storage and communication resources, and that can serve as a universal foundation for the component interoperability that novel services and applications will require.

“We make five recommendations for decentralized edge and peripheral ecosystems:

  • Converge on a new hourglass architecture for a Common Distributed Service Platform (DSP).
  • Target workflow patterns for improved data logistics.
  • Design cloud stream processing capabilities for HPC.
  • Promote a scalable approach to Content Delivery/Distribution Networks.
  • Develop software libraries for common intermediate processing tasks.

“We make five actionable conclusions for centralized facilities:

  • Energy is an overarching challenge for sustainability.
  • Data reduction is a fundamental pattern.
  • Radically improved resource management is required.
  • Both centralized and decentralized systems share many common software challenges and opportunities: 
(a) Leverage HPC math libraries for HDA.
(b) More efforts for numerical library standards.
(c) New standards for shared memory parallel processing.
(d) Interoperability between programming models and data formats.
  • Machine learning is becoming an important component of scientific workloads, and HPC architectures must be adapted to accommodate this evolution.”

Link to BDEC Report: http://www.exascale.org/bdec/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to provide what the companies call the “the highest performance Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology cr Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This