UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

By Tiffany Trader

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 15-year relationship between UCSD and Japan’s National Institute of Advanced Industrial Science and Technology (AIST) that goes back to 2002 with the establishment of the Pacific Rim Application and Grid Middleware Assembly (PRAGMA).

With the upcoming spring launch of AIST’s AI Bridging Cloud Infrastructure (ABCI), the deployment of the GPU-powered CHASE-CI machine learning infrastructure (see our coverage here), COMET’s GPU expansion, and the announcement of UCSD’s Data Science Institute, it’s easy to understand the enthusiasm for the opportunities afforded by the MOU, which builds on a shared history and mutual interests and activities around cutting-edge developments in supercomputing AI and deep learning.

The MOU covers research, education, and application of scientific knowledge in AI and more broadly data-intensive science and robotics. Target activities include the organization of workshops between the U.S. and Japan; exchange of faculty, scholars and researchers between the two campuses; collaborative infrastructure projects between UC’s Pacific Research Platform (PRP) and AIST’s AI Bridging Cloud Infastructure (ABCI) and the use of ABCI for collaborative research projects.

UCSD’s soon-to-be-launched Data Science Institute will also play a role. The institute, made possible thanks to a $75 million endowment from Taner Halicioglu (the largest ever by a UC San Diego alumnus), will be physically colocated with the San Diego Supercomputer Center (SDSC).

Phil Papadopoulos, chief technology officer of SDSC, and Satoshi Sekiguchi, vice president of AIST, at the UCSD campus signing ceremony on Jan. 10, 2018

Leaders from both groups took part in the signing ceremony and shared remarks. In addition to the two respective project leads, Satoshi Sekiguchi, vice president of AIST, and Phil Papadopoulos, chief technology officer of SDSC, we heard from Michael Norman, director, SDSC; Larry Smarr, director, Calit2; Jeff Elman, UCSD Distinguished Professor of Cognitive Science and one of the co-directors of the new Data Science Institute; and Jason Haga of AIST, speaking on behalf of AIST President Ryoji Chubachi.

Papadopoulos recounted how the groups had developed close ties under PRAGMA and are well-aligned due to their mutual interest in deep learning, GPU-based computation, big data, and very high speed networks. “With all these things happening every day at UCSD at the Data Sciences Institute, the Pacific Research Platform (PRP) out of Calit2, the GPU expansions on COMET, CHASE-CI which is a distributed deep learning platform that is just being built on top of the PRP, it made sense that this really should be a UCSD-wide agreement. AIST is really a terrific organization and is collaborative by nature in the global sense of the word.”

Satoshi Sekiguchi, vice president of AIST, shared similar sentiments and an appreciation of the extended research family. “UCSD’s strength in application and infrastructure areas aligns with AIST’s primary research interest of IT platforms and AI accelerations. These activities also align very well with the Pacific Research Platform that Larry Smarr and Tom DeFanti have been leading.”

At AIST and at the Department of Information Technology and Human Factors, where Sekiguchi serves as director general, one of the key messages on artificial intelligence research is embedding AI in the real world. “AI should be deployed in the physical space to help solve the real problems in life such as in the manufacturing industries, health care and so on and we wish to contribute to the private sectors to help them realize development of AI technologies,” said Sekiguchi. To this end, AIST has established partnerships with several well-known companies, including NEC, Panasonic, and Toyota Industries.

Sekiguchi also expressed his appreciation for the hard work that made it possible for this MOU to come together in only three months. “The short MOU negotiations happened because of our years of friendly relationships. For example, when the Calit2 building opened, they kindly offered us an office to accommodate the AIST research staff and to collaborate continuously together on the PRAGMA program and beyond that,” said Sekiguchi.

SDSC Director Michael Norman praised AIST as a world leader in developing HPC systems and applications in AI, deep learning for science and society. He referred to the ABCI system that is currently being developed with nearly 5,000 GPUs as “the mother of all GPU clusters.”

“This will be one of the most powerful systems for the areas of AI and deep learning. And so at a very practical level this MOU with UCSD will allow UCSD to have a front row seat to this bold experiment in the future of computing and we will be able to participate in it with a bidirectional visitor exchange program. Through this MOU we hope to broaden UCSD’s interactions with the scientists and engineers at AIST across the organization, building on our long-standing relationship in computing,” said Norman.

Programmatic synergies between the two groups are numerous and include energy and the environment, materials and chemistry, life sciences and biotechnology, information technology and electronics and manufacturing.

Larry Smarr, director of Calit2, emphasized the diverse nature of the joint MOU as well as the complementarity between the university and AIST. In 2002, when Calit2 had the largest information technology research grant from NSF in the country to build the OptIPuter, AIST was a formal international partner to that grant from the beginning. This resulted in a long history of high speed optical networking between the institutions. Smarr stated that one of the goals of the MOU will be to set up a 10-100 gigabit per second link directly into AIST from UCSD to accommodate the next phase of artificial intelligence and deep learning on massive amounts of data.

Smarr is co-PI on CHASE-CI (the Cognitive Hardware and Software Ecosystem Cyberinfrastructure), the NSF-funded GPU cloud being built on top of the Pacific Research Platform. “This framework allows for investigators here with the variety of big data including cognitive science to make use of what is essentially the broadest set of architectures to support machine learning anywhere in the world,” said Smarr.

Jeff Elman, one of the co-directors of the new Data Science Institute along with Rajesh Gupta, spoke of the possibilities afforded by the MOU in relation to the new institute and the shared focus on being a force for good in the world. He also emphasized the cross-disciplinary nature of the collaboration.

“The institute has both a research mission in terms of stimulating and supporting research, innovation, but also an educational mission, in terms of training students, post-docs and also interacting with training opportunities from partners and here’s where I see really exciting opportunities with AIST,” said Elman.

“We are entering and in fact have entered an era where the kinds of data that we now have available surpass, I think, the scope of our imaginations to grapple with both in terms of scope, the range of things we can now quantify and measure and the magnitude, the scale, from the nano to the peta, and now there’s an exa and a zetta,” Elman continued. “These data have tremendous potential on the one hand to help us understand phenomena that are global in nature or micro or nano in nature, not only to understand but also to guide action because I think ultimately science and technology are about understanding the world so that one can change it to intervene when there are harmful things but also to benefit and make improvements. Reading AIST’s mission statement clearly the focus on technology for the social good is something that you value and it is clearly a very important part of the ethos of this campus and of the new institute.”

The final set of remarks were delivered by Jason Haga, senior research scientist in the Information Technology Research Institute of AIST, on behalf of AIST President Dr. Ryoji Chubachi. “[As part of this MOU] we will create joint projects between AIST and UCSD using our new ABCI infrastructure to help establish the largest collaboration platform based on AI. Both institutions will aim to build a cyberinfrastructure that enables mutual access to big data accumulated both in the U.S. and Japan. Furthermore we will expand these activities to other institutions in the U.S. as well as Asia to create a larger global network. I would like to conclude by wishing that our collaboration will lead the way in U.S.-Japan innovation in the future.”

From left to right: Jeff Elman, co-director of UCSD Data Science Institute; Michael Norman, director, SDSC; Larry Smarr, director, Calit2; Satoshi Sekiguchi, vice president of AIST; Jason Haga, senior research scientist in the Information Technology Research Institute of AIST; and Phil Papadopoulos, chief technology officer of SDSC
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This