Dealing with HPC Correctness: Challenges and Opportunities

By Ignacio Laguna, Lawrence Livermore National Laboratory and Ganesh Gopalakrishnan, University of Utah

January 25, 2018

Editor’s Note: HPC Correctness – producing reliable HPC code – is a long-term challenge that’s grown only more difficult with the proliferation of heterogeneous computing and the drive towards exascale. This article by Ignacio Laguna (Lawrence Livermore National Laboratory) and Ganesh Gopalakrishnan (University of Utah) describes the problem and reviews recent efforts to develop solutions. As noted in the article, the report from the DOE HPC Correctness Summit has many valuables insights. Thanks also to Sonia Sachs, ALCF Program Manager, Advanced Scientific Computing Research, DOE, who coordinated preparation of the article.

Developing correct and reliable HPC software is notoriously difficult. While effective correctness techniques for serial codes (e.g., verification, debugging and systematic testing) have been in vogue for decades, such techniques are in their infancy for HPC codes. Why is that?

HPC correctness techniques are burdened with all the well-known problems associated with serial software plus special challenges:

  • growing heterogeneity (e.g., architectures with CPUs, special purpose accelerators)
  • massive scales of computation (i.e., some bugs only manifest under very high degrees of concurrency)
  • use of combined parallel programming models (e.g., MPI+X) that often lead to non-intuitive behaviors
  • new scalable numerical algorithms (e.g., to leverage reduced precision in floating-point arithmetic)
  • use of different compilers and optimizations

 

HPC practitioners see additional demands on their time as they learn how to effectively utilize newer machine types that can support much larger problem scales. Developing new and scalable algorithms that work well on next-generation machines while also supporting new science imposes additional—and non-trivial—demands. Developers often don’t have time left to graduate beyond the use of printf debugging or traditional debuggers. Unfortunately, mounting evidence suggests that significant productivity losses due to show-stopper bugs do periodically occur, making the development of better debugging methods inevitable.

Two recent efforts took aim at these challenges. First, an HPC correctness summit sponsored by the U.S. Department of Energy (DOE) resulted in a report (50+ pages) covering a spectrum of issues that can help lay this missing foundation in HPC debugging and correctness.

Second, a well-attended workshop entitled Correctness 2017: First International Workshop on Software Correctness for HPC Applications took place at SC17. This article summarizes these two efforts and concludes with avenues for furthering HPC correctness research. We also invite reader comments on ideas and opportunities to advance this cause.

1. HPC Correctness Summit

Held on January 25–26, 2017, at the DOE headquarters (Washington, D.C.), the HPC Correctness Summit included discussions of several show-stopper bugs that have occurred during large-scale, high-stakes HPC projects. Each bug took several painstaking months of debugging to rectify, revealing the potential for productivity losses and uncertainties of much more severe proportions awaiting the exascale era.

The DOE report distills many valuable nuggets of information not easily found elsewhere. For instance, it compiles one of the most comprehensive tables capturing existing debugging and testing solutions, the family of techniques they fall under, and further details of the state of development of these tools.

The report concludes that we must aim for rigorous specifications, go after debugging automation by emphasizing bug-hunting over formal proofs, and launch a variety of activities that address the many facets of correctness.

These facets include reliable compilation; detecting data races; root-causing the sources of floating-point result variability brought in by different algorithms, compilers, and platforms; combined uses of static and dynamic analysis; focus on libraries; and smart IDEs.

Last but not least, the DOE report laments a near-total absence of a community culture of sharing bug repositories, developing common debugging solutions, and even talking openly about bugs (and not merely about performance and scalability successes). Dr. Leslie Lamport, the 2014 ACM Turing Award Winner, observes that the difficulty of verification can be an indirect measure of how ill-structured the software design is. A famous verification researcher, Dr. Ken McMillan, states it even more directly: We design through debugging. Promoting this culture of openness calls for incentives through well-targeted research grants, as it takes real work to reach a higher plane of rigor. While some of the best creations in the HPC-land were acts of altruism, experience suggests that more than altruism is often inevitable.

Recommendation for sponsoring the Summit was made by the DOE ASCR program manager Dr. Sonia R. Sachs, under the leadership of research director Dr. William Harrod. In addition to the authors of this article, participating researchers were Paul Hovland (Argonne National Lab), Costin Iancu (Lawrence Berkeley National Lab), Sriram Krishnamoorthy (Pacific Northwest National Lab), Richard Lethin (Reservoir Labs), Koushik Sen (UC Berkeley), Stephen Siegel (University of Delaware), and Armando SolarLezama (MIT).

2. HPC Correctness Workshop

As correctness becomes an increasingly important aspect of HPC applications, the research and practitioner community begins to discuss ways to address the problem. Correctness 2017: The First International Workshop on Software Correctness for HPC Applications debuted at the SC conference series on November 12, 2017, demonstrating growing interest on this topic. The goal was to discuss ideas for HPC correctness, including novel research methods to solve challenging problems as well as tools and techniques that can be used in practice today.

A keynote address by Stephen Siegel (Associate Professor, University of Delaware) on the CIVL verification language opened the workshop, followed by seven paper presentations grouped into three categories: applications and algorithms correctness; runtime systems correctness; and code generation and code equivalence correctness.

Topics of discussion included static analysis for finding the root-cause of floating-point variability, how HPC communities like climate modeling deal with platform-dependent result variability, and ambitious proposals aimed at in situ model checking of MPI applications. Participants also examined automated synthesis of HPC algorithms and successes in detecting extremely tricky cases of OpenMP errors by applying rigorous model-level analysis.

While using formal methods to verify large HPC applications is perhaps too ambitious today, a question arose: Can formal methods be applied to verify properties of small HPC programs? (For example, small programs like DOE proxy applications extracted from large production applications could be used to mimic some features of large-scale applications.) Workshop participants agreed that this may be a possibility—at least for some small proxy applications or for some of their key components.

The audience voiced enthusiastic support for continuing correctness workshops at SC. This inaugural workshop was organized by Ignacio Laguna (Lawrence Livermore National Laboratory) and Cindy Rubio-González (University of California at Davis).

3. What’s Next?

As the community depends on in silico experiments for large-scale science and engineering projects, trustworthy platforms and tools will ensure that investments in HPC infrastructures and trained personnel are effective and efficient. While further experience is yet to be gained on cutting-edge exascale machines and their productive use, waiting for the machines to be fully operational before developing effective debugging solutions is extremely short-sighted. Today’s petaflop machines can—and should—be harnessed for testing and calibrating debugging solutions for the exascale era.

Initiatives to address the correctness problem in HPC, such as the DOE summit and the SC17 workshop, are only the beginning of many more such studies and events to follow. In addition to the DOE, the authors thank their own organizations for their support and for facilitating these discussions.

Overall, we encourage the HPC community to acknowledge that debugging is fundamentally an enabler of performance optimizations. While this question was not settled in any formal way at the Correctness workshop, the level of interest exhibited by the attendees coupled with their keen participation suggested that research on rigorous methods at all levels must be encouraged and funded. There was however widespread agreement that conventional methods aren’t bringing in the requisite levels of incisiveness with respect to defect elimination in HPC.

Ganesh Gopalakrishnan’s work is supported by research grants from divisions under the NSF directorate for Computer and Information Science and Engineering. Ignacio Laguna’s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DEAC52-07NA27344 (LLNL-MI-744729).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire