Dealing with HPC Correctness: Challenges and Opportunities

By Ignacio Laguna, Lawrence Livermore National Laboratory and Ganesh Gopalakrishnan, University of Utah

January 25, 2018

Editor’s Note: HPC Correctness – producing reliable HPC code – is a long-term challenge that’s grown only more difficult with the proliferation of heterogeneous computing and the drive towards exascale. This article by Ignacio Laguna (Lawrence Livermore National Laboratory) and Ganesh Gopalakrishnan (University of Utah) describes the problem and reviews recent efforts to develop solutions. As noted in the article, the report from the DOE HPC Correctness Summit has many valuables insights. Thanks also to Sonia Sachs, ALCF Program Manager, Advanced Scientific Computing Research, DOE, who coordinated preparation of the article.

Developing correct and reliable HPC software is notoriously difficult. While effective correctness techniques for serial codes (e.g., verification, debugging and systematic testing) have been in vogue for decades, such techniques are in their infancy for HPC codes. Why is that?

HPC correctness techniques are burdened with all the well-known problems associated with serial software plus special challenges:

  • growing heterogeneity (e.g., architectures with CPUs, special purpose accelerators)
  • massive scales of computation (i.e., some bugs only manifest under very high degrees of concurrency)
  • use of combined parallel programming models (e.g., MPI+X) that often lead to non-intuitive behaviors
  • new scalable numerical algorithms (e.g., to leverage reduced precision in floating-point arithmetic)
  • use of different compilers and optimizations

 

HPC practitioners see additional demands on their time as they learn how to effectively utilize newer machine types that can support much larger problem scales. Developing new and scalable algorithms that work well on next-generation machines while also supporting new science imposes additional—and non-trivial—demands. Developers often don’t have time left to graduate beyond the use of printf debugging or traditional debuggers. Unfortunately, mounting evidence suggests that significant productivity losses due to show-stopper bugs do periodically occur, making the development of better debugging methods inevitable.

Two recent efforts took aim at these challenges. First, an HPC correctness summit sponsored by the U.S. Department of Energy (DOE) resulted in a report (50+ pages) covering a spectrum of issues that can help lay this missing foundation in HPC debugging and correctness.

Second, a well-attended workshop entitled Correctness 2017: First International Workshop on Software Correctness for HPC Applications took place at SC17. This article summarizes these two efforts and concludes with avenues for furthering HPC correctness research. We also invite reader comments on ideas and opportunities to advance this cause.

1. HPC Correctness Summit

Held on January 25–26, 2017, at the DOE headquarters (Washington, D.C.), the HPC Correctness Summit included discussions of several show-stopper bugs that have occurred during large-scale, high-stakes HPC projects. Each bug took several painstaking months of debugging to rectify, revealing the potential for productivity losses and uncertainties of much more severe proportions awaiting the exascale era.

The DOE report distills many valuable nuggets of information not easily found elsewhere. For instance, it compiles one of the most comprehensive tables capturing existing debugging and testing solutions, the family of techniques they fall under, and further details of the state of development of these tools.

The report concludes that we must aim for rigorous specifications, go after debugging automation by emphasizing bug-hunting over formal proofs, and launch a variety of activities that address the many facets of correctness.

These facets include reliable compilation; detecting data races; root-causing the sources of floating-point result variability brought in by different algorithms, compilers, and platforms; combined uses of static and dynamic analysis; focus on libraries; and smart IDEs.

Last but not least, the DOE report laments a near-total absence of a community culture of sharing bug repositories, developing common debugging solutions, and even talking openly about bugs (and not merely about performance and scalability successes). Dr. Leslie Lamport, the 2014 ACM Turing Award Winner, observes that the difficulty of verification can be an indirect measure of how ill-structured the software design is. A famous verification researcher, Dr. Ken McMillan, states it even more directly: We design through debugging. Promoting this culture of openness calls for incentives through well-targeted research grants, as it takes real work to reach a higher plane of rigor. While some of the best creations in the HPC-land were acts of altruism, experience suggests that more than altruism is often inevitable.

Recommendation for sponsoring the Summit was made by the DOE ASCR program manager Dr. Sonia R. Sachs, under the leadership of research director Dr. William Harrod. In addition to the authors of this article, participating researchers were Paul Hovland (Argonne National Lab), Costin Iancu (Lawrence Berkeley National Lab), Sriram Krishnamoorthy (Pacific Northwest National Lab), Richard Lethin (Reservoir Labs), Koushik Sen (UC Berkeley), Stephen Siegel (University of Delaware), and Armando SolarLezama (MIT).

2. HPC Correctness Workshop

As correctness becomes an increasingly important aspect of HPC applications, the research and practitioner community begins to discuss ways to address the problem. Correctness 2017: The First International Workshop on Software Correctness for HPC Applications debuted at the SC conference series on November 12, 2017, demonstrating growing interest on this topic. The goal was to discuss ideas for HPC correctness, including novel research methods to solve challenging problems as well as tools and techniques that can be used in practice today.

A keynote address by Stephen Siegel (Associate Professor, University of Delaware) on the CIVL verification language opened the workshop, followed by seven paper presentations grouped into three categories: applications and algorithms correctness; runtime systems correctness; and code generation and code equivalence correctness.

Topics of discussion included static analysis for finding the root-cause of floating-point variability, how HPC communities like climate modeling deal with platform-dependent result variability, and ambitious proposals aimed at in situ model checking of MPI applications. Participants also examined automated synthesis of HPC algorithms and successes in detecting extremely tricky cases of OpenMP errors by applying rigorous model-level analysis.

While using formal methods to verify large HPC applications is perhaps too ambitious today, a question arose: Can formal methods be applied to verify properties of small HPC programs? (For example, small programs like DOE proxy applications extracted from large production applications could be used to mimic some features of large-scale applications.) Workshop participants agreed that this may be a possibility—at least for some small proxy applications or for some of their key components.

The audience voiced enthusiastic support for continuing correctness workshops at SC. This inaugural workshop was organized by Ignacio Laguna (Lawrence Livermore National Laboratory) and Cindy Rubio-González (University of California at Davis).

3. What’s Next?

As the community depends on in silico experiments for large-scale science and engineering projects, trustworthy platforms and tools will ensure that investments in HPC infrastructures and trained personnel are effective and efficient. While further experience is yet to be gained on cutting-edge exascale machines and their productive use, waiting for the machines to be fully operational before developing effective debugging solutions is extremely short-sighted. Today’s petaflop machines can—and should—be harnessed for testing and calibrating debugging solutions for the exascale era.

Initiatives to address the correctness problem in HPC, such as the DOE summit and the SC17 workshop, are only the beginning of many more such studies and events to follow. In addition to the DOE, the authors thank their own organizations for their support and for facilitating these discussions.

Overall, we encourage the HPC community to acknowledge that debugging is fundamentally an enabler of performance optimizations. While this question was not settled in any formal way at the Correctness workshop, the level of interest exhibited by the attendees coupled with their keen participation suggested that research on rigorous methods at all levels must be encouraged and funded. There was however widespread agreement that conventional methods aren’t bringing in the requisite levels of incisiveness with respect to defect elimination in HPC.

Ganesh Gopalakrishnan’s work is supported by research grants from divisions under the NSF directorate for Computer and Information Science and Engineering. Ignacio Laguna’s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DEAC52-07NA27344 (LLNL-MI-744729).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This