Dealing with HPC Correctness: Challenges and Opportunities

By Ignacio Laguna, Lawrence Livermore National Laboratory and Ganesh Gopalakrishnan, University of Utah

January 25, 2018

Editor’s Note: HPC Correctness – producing reliable HPC code – is a long-term challenge that’s grown only more difficult with the proliferation of heterogeneous computing and the drive towards exascale. This article by Ignacio Laguna (Lawrence Livermore National Laboratory) and Ganesh Gopalakrishnan (University of Utah) describes the problem and reviews recent efforts to develop solutions. As noted in the article, the report from the DOE HPC Correctness Summit has many valuables insights. Thanks also to Sonia Sachs, ALCF Program Manager, Advanced Scientific Computing Research, DOE, who coordinated preparation of the article.

Developing correct and reliable HPC software is notoriously difficult. While effective correctness techniques for serial codes (e.g., verification, debugging and systematic testing) have been in vogue for decades, such techniques are in their infancy for HPC codes. Why is that?

HPC correctness techniques are burdened with all the well-known problems associated with serial software plus special challenges:

  • growing heterogeneity (e.g., architectures with CPUs, special purpose accelerators)
  • massive scales of computation (i.e., some bugs only manifest under very high degrees of concurrency)
  • use of combined parallel programming models (e.g., MPI+X) that often lead to non-intuitive behaviors
  • new scalable numerical algorithms (e.g., to leverage reduced precision in floating-point arithmetic)
  • use of different compilers and optimizations

 

HPC practitioners see additional demands on their time as they learn how to effectively utilize newer machine types that can support much larger problem scales. Developing new and scalable algorithms that work well on next-generation machines while also supporting new science imposes additional—and non-trivial—demands. Developers often don’t have time left to graduate beyond the use of printf debugging or traditional debuggers. Unfortunately, mounting evidence suggests that significant productivity losses due to show-stopper bugs do periodically occur, making the development of better debugging methods inevitable.

Two recent efforts took aim at these challenges. First, an HPC correctness summit sponsored by the U.S. Department of Energy (DOE) resulted in a report (50+ pages) covering a spectrum of issues that can help lay this missing foundation in HPC debugging and correctness.

Second, a well-attended workshop entitled Correctness 2017: First International Workshop on Software Correctness for HPC Applications took place at SC17. This article summarizes these two efforts and concludes with avenues for furthering HPC correctness research. We also invite reader comments on ideas and opportunities to advance this cause.

1. HPC Correctness Summit

Held on January 25–26, 2017, at the DOE headquarters (Washington, D.C.), the HPC Correctness Summit included discussions of several show-stopper bugs that have occurred during large-scale, high-stakes HPC projects. Each bug took several painstaking months of debugging to rectify, revealing the potential for productivity losses and uncertainties of much more severe proportions awaiting the exascale era.

The DOE report distills many valuable nuggets of information not easily found elsewhere. For instance, it compiles one of the most comprehensive tables capturing existing debugging and testing solutions, the family of techniques they fall under, and further details of the state of development of these tools.

The report concludes that we must aim for rigorous specifications, go after debugging automation by emphasizing bug-hunting over formal proofs, and launch a variety of activities that address the many facets of correctness.

These facets include reliable compilation; detecting data races; root-causing the sources of floating-point result variability brought in by different algorithms, compilers, and platforms; combined uses of static and dynamic analysis; focus on libraries; and smart IDEs.

Last but not least, the DOE report laments a near-total absence of a community culture of sharing bug repositories, developing common debugging solutions, and even talking openly about bugs (and not merely about performance and scalability successes). Dr. Leslie Lamport, the 2014 ACM Turing Award Winner, observes that the difficulty of verification can be an indirect measure of how ill-structured the software design is. A famous verification researcher, Dr. Ken McMillan, states it even more directly: We design through debugging. Promoting this culture of openness calls for incentives through well-targeted research grants, as it takes real work to reach a higher plane of rigor. While some of the best creations in the HPC-land were acts of altruism, experience suggests that more than altruism is often inevitable.

Recommendation for sponsoring the Summit was made by the DOE ASCR program manager Dr. Sonia R. Sachs, under the leadership of research director Dr. William Harrod. In addition to the authors of this article, participating researchers were Paul Hovland (Argonne National Lab), Costin Iancu (Lawrence Berkeley National Lab), Sriram Krishnamoorthy (Pacific Northwest National Lab), Richard Lethin (Reservoir Labs), Koushik Sen (UC Berkeley), Stephen Siegel (University of Delaware), and Armando SolarLezama (MIT).

2. HPC Correctness Workshop

As correctness becomes an increasingly important aspect of HPC applications, the research and practitioner community begins to discuss ways to address the problem. Correctness 2017: The First International Workshop on Software Correctness for HPC Applications debuted at the SC conference series on November 12, 2017, demonstrating growing interest on this topic. The goal was to discuss ideas for HPC correctness, including novel research methods to solve challenging problems as well as tools and techniques that can be used in practice today.

A keynote address by Stephen Siegel (Associate Professor, University of Delaware) on the CIVL verification language opened the workshop, followed by seven paper presentations grouped into three categories: applications and algorithms correctness; runtime systems correctness; and code generation and code equivalence correctness.

Topics of discussion included static analysis for finding the root-cause of floating-point variability, how HPC communities like climate modeling deal with platform-dependent result variability, and ambitious proposals aimed at in situ model checking of MPI applications. Participants also examined automated synthesis of HPC algorithms and successes in detecting extremely tricky cases of OpenMP errors by applying rigorous model-level analysis.

While using formal methods to verify large HPC applications is perhaps too ambitious today, a question arose: Can formal methods be applied to verify properties of small HPC programs? (For example, small programs like DOE proxy applications extracted from large production applications could be used to mimic some features of large-scale applications.) Workshop participants agreed that this may be a possibility—at least for some small proxy applications or for some of their key components.

The audience voiced enthusiastic support for continuing correctness workshops at SC. This inaugural workshop was organized by Ignacio Laguna (Lawrence Livermore National Laboratory) and Cindy Rubio-González (University of California at Davis).

3. What’s Next?

As the community depends on in silico experiments for large-scale science and engineering projects, trustworthy platforms and tools will ensure that investments in HPC infrastructures and trained personnel are effective and efficient. While further experience is yet to be gained on cutting-edge exascale machines and their productive use, waiting for the machines to be fully operational before developing effective debugging solutions is extremely short-sighted. Today’s petaflop machines can—and should—be harnessed for testing and calibrating debugging solutions for the exascale era.

Initiatives to address the correctness problem in HPC, such as the DOE summit and the SC17 workshop, are only the beginning of many more such studies and events to follow. In addition to the DOE, the authors thank their own organizations for their support and for facilitating these discussions.

Overall, we encourage the HPC community to acknowledge that debugging is fundamentally an enabler of performance optimizations. While this question was not settled in any formal way at the Correctness workshop, the level of interest exhibited by the attendees coupled with their keen participation suggested that research on rigorous methods at all levels must be encouraged and funded. There was however widespread agreement that conventional methods aren’t bringing in the requisite levels of incisiveness with respect to defect elimination in HPC.

Ganesh Gopalakrishnan’s work is supported by research grants from divisions under the NSF directorate for Computer and Information Science and Engineering. Ignacio Laguna’s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DEAC52-07NA27344 (LLNL-MI-744729).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora sys Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over t Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains — including and in particular the semiconductor supply chain. In th Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York St Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, a Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

OpenCAPI to Be Folded into CXL

August 1, 2022

As the need for speed drives computational workloads, more standards organizations are coalescing around a standard called Compute Express Link – also known a Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire