Networking, Data Experts Design a Better Portal for Scientific Discovery

By Jon Bashor

January 29, 2018

Jan. 29, 2018 — These days, it’s easy to overlook the fact that the World Wide Web was created nearly 30 years ago primarily to help researchers access and share scientific data. Over the years, the web has evolved into a tool that helps us eat, shop, travel, watch movies and even monitor our homes.

The Science DMZ includes multiple DTNs that provide for high-speed transfer between network and storage. Portal functions run on a portal server, located on the institution’s enterprise network. The DTNs need only speak the API of the data management service (Globus in this case).

Meanwhile, scientific instruments have become much more powerful, generating massive datasets, and international collaborations have proliferated. In this new era, the web has become an essential part of the scientific process, but the most common method of sharing research data remains firmly attached to the earliest days of the web. This can be a huge impediment to scientific discovery.

That’s why a team of networking experts from the Department of Energy’s Energy Sciences Network (ESnet), with the Globus team from the University of Chicago and Argonne National Laboratory, has designed a new approach that makes data sharing faster, more reliable and more secure. In an article published Jan. 15 in Peer J Comp Sci, the team describes their “The Modern Research Data Portal: a design pattern for networked, data-intensive science.”

“Both the size of datasets and the quantity of data objects has exploded, but the typical design of a data portal hasn’t really changed,” said co-author Eli Dart, a network engineer with the Department of Energy’s Energy Sciences Network, or ESnet. “Our new design preserves that ease of use, but easily scales up to handle the huge amounts of data associated with today’s science.”

Data portals, sometimes called science gateways, are web-based interfaces for access data storage and computing systems, allowing authorized users to access data and perform shared computations. As science becomes increasingly data-driven and collaborative, data portals are advancing research in materials, physics, astrophysics, cosmology, climate science and other fields.

The traditional portal is driven by a web server that is connected to a storage system and a database and processes users’ requests for data. While this simple design was straightforward to develop 25 years ago, it has increasingly become an obstacle to performance, usability and security.

“The problem with using old technology is that these portals don’t provide fast access to the data and they aren’t very flexible,” said lead author Ian Foster, who is the Arthur Holly Compton Professor at the University of Chicago and Director of the Data Science and Learning Division at Argonne National Laboratory. “Since each portal is developed as its own silo, the organization therefore must implement, and then manage and support, multiple complete software stacks to support each portal.”

The new portal design is built on two approaches developed to simplify and speed up transfers of large datasets.

  • The Science DMZ, which Dart developed, is a high-performance network design that connects large-scale data servers directly to high-speed networks and is increasingly used by research institutions to better manage data transfers.
  • Globus is a cloud-based service to which developers of data portals and other science services can outsource responsibility for complex tasks like authentication, authorization, data movement, and data sharing. Globus can be used, in particular, to drive data transfers into and out of Science DMZs.

Kyle Chard, Foster, David Shiffett, Steven Tuecke and Jason Williams are co-authors of the paper and helped develop Globus at Argonne National Laboratory and the University of Chicago. In their paper, the authors note that the concept became feasible in 2015 as Globus and the Science DMZ became mature technologies.

“Together, Globus and the Science DMZ give researchers a powerful toolbox for conducting their research,” Dart said.

One portal incorporating the new design is the Research Data Archive managed by the National Center for Atmospheric Research, which contains a large and diverse collection of meteorological and oceanographic observations, operational and reanalysis model outputs, and remote sensing datasets to support atmospheric and geosciences research.

For example, a scientist working at a university could download data from the National Center for Atmospheric Research (NCAR) in Colorado and then use it to run simulations at DOE and NSF supercomputing centers in California and Illinois, and finally move the data to her home institution for analysis. To illustrate how the design works, Dart selected a 460-gigabyte dataset at NCAR, initiated a Globus transfer to DOE’s National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, logged in to his storage account and started the transfer. Four minutes later, the 5,141 files had been seamlessly transferred.

How the design works

The Modern Research Data Portal takes the single-server model of the traditional portal design and divides it among three distinct components.

  • A portal web server handles the search for and access to the specified data, and similar tasks.
  • The data servers, often called Data Transfer Nodes, are connected to high-speed networks through a specialized enclave, in this case the Science DMZ. The Science DMZ provides a dedicated, secure link to the data servers, but avoids common performance bottlenecks caused by typical designs not optimized for high-speed transfers.
  • Globus manages the authentication, data access and data transfers. Globus makes it possible for users to manage data irrespective of the location or storage system on which data reside and supports data transfer, sharing, and publication directly from those storage systems.

“The design pattern thus defines distinct roles for the web server, which manages who is allowed to do what; data servers, where authorized operations are performed on data; and external services, which orchestrate data access,” the authors wrote.

Globus is already used by tens of thousands of researchers worldwide with endpoints at more than 360 sites, so many researchers are familiar with its capabilities and rely on it on a regular basis. In fact, about 80 percent of major research universities and national labs in the U.S. use Globus.

At the same time, more than 100 research universities across the country have deployed Science DMZs, thanks to funding support through the National Science Foundation’s Campus Cyberinfrastructure Program.

A critical component of the system is “a little agent called Globus Connect, which is much like the Google Drive or Dropbox agents one would install on their own PCs,” Chard said. Globus Connect allows the Globus service to move data to and from the computer using high performance protocols and also HTTPS for direct access. It also allows users to share data dynamically with their peers.

According to Chard, the design provides research organizations with easy-to-use technology tools similar to those used by business startups to streamline development.

“If we look to industry, startup businesses can now build upon a suite of services to simplify what they need to build and manage themselves,” Chard said. “In a research setting, Globus has developed a stack of such capabilities that are needed by any research portal. Recently, we (Globus) have developed interfaces to make it trivial for developers to build upon these capabilities as a platform.”

“As a result of this design, users have a platform that allows them to easily place and transfer data without having to scale up the human effort as the amount of data scales up,” Dart said.

ESnet is a DOE Office of Science User Facility. Argonne and Lawrence Berkeley national laboratories are supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

About Computing Sciences at Berkeley Lab

The Lawrence Berkeley National Laboratory (Berkeley LabComputing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy’s research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe.

ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 6,000 scientists at national laboratories and universities, including those at Berkeley Lab’s Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation. NERSC and ESnet are DOE Office of Science User Facilities.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced computing technologies for the AI and exascale era. "Over th Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has now encompassed CPUs offered by the leading public cloud serv Read more…

By Doug Black

Medical Imaging Gets an AI Boost

December 3, 2019

AI technologies incorporated into diagnostic imaging tools have proven useful in eliminating confirmation bias, often outperforming human clinicians who may bring their own prejudices. Another issue slowing progress is t Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

AI Needs Intelligent HPC infrastructure

Artificial Intelligence (AI) has revolutionized entire industries and enables humanity to solve some of the most daunting challenges. To accomplish this, it requires massive amounts of data from heterogeneous sources that is processed it new ways that differs significantly from HPC applications. Read more…

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting th Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

How the Gordon Bell Prize Winners Used Summit to Illuminate Transistors

November 22, 2019

At SC19, the Association for Computing Machinery (ACM) awarded the prestigious Gordon Bell Prize to the Swiss Federal Institute of Technology (ETH) Zurich. The Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This