Networking, Data Experts Design a Better Portal for Scientific Discovery

By Jon Bashor

January 29, 2018

Jan. 29, 2018 — These days, it’s easy to overlook the fact that the World Wide Web was created nearly 30 years ago primarily to help researchers access and share scientific data. Over the years, the web has evolved into a tool that helps us eat, shop, travel, watch movies and even monitor our homes.

The Science DMZ includes multiple DTNs that provide for high-speed transfer between network and storage. Portal functions run on a portal server, located on the institution’s enterprise network. The DTNs need only speak the API of the data management service (Globus in this case).

Meanwhile, scientific instruments have become much more powerful, generating massive datasets, and international collaborations have proliferated. In this new era, the web has become an essential part of the scientific process, but the most common method of sharing research data remains firmly attached to the earliest days of the web. This can be a huge impediment to scientific discovery.

That’s why a team of networking experts from the Department of Energy’s Energy Sciences Network (ESnet), with the Globus team from the University of Chicago and Argonne National Laboratory, has designed a new approach that makes data sharing faster, more reliable and more secure. In an article published Jan. 15 in Peer J Comp Sci, the team describes their “The Modern Research Data Portal: a design pattern for networked, data-intensive science.”

“Both the size of datasets and the quantity of data objects has exploded, but the typical design of a data portal hasn’t really changed,” said co-author Eli Dart, a network engineer with the Department of Energy’s Energy Sciences Network, or ESnet. “Our new design preserves that ease of use, but easily scales up to handle the huge amounts of data associated with today’s science.”

Data portals, sometimes called science gateways, are web-based interfaces for access data storage and computing systems, allowing authorized users to access data and perform shared computations. As science becomes increasingly data-driven and collaborative, data portals are advancing research in materials, physics, astrophysics, cosmology, climate science and other fields.

The traditional portal is driven by a web server that is connected to a storage system and a database and processes users’ requests for data. While this simple design was straightforward to develop 25 years ago, it has increasingly become an obstacle to performance, usability and security.

“The problem with using old technology is that these portals don’t provide fast access to the data and they aren’t very flexible,” said lead author Ian Foster, who is the Arthur Holly Compton Professor at the University of Chicago and Director of the Data Science and Learning Division at Argonne National Laboratory. “Since each portal is developed as its own silo, the organization therefore must implement, and then manage and support, multiple complete software stacks to support each portal.”

The new portal design is built on two approaches developed to simplify and speed up transfers of large datasets.

  • The Science DMZ, which Dart developed, is a high-performance network design that connects large-scale data servers directly to high-speed networks and is increasingly used by research institutions to better manage data transfers.
  • Globus is a cloud-based service to which developers of data portals and other science services can outsource responsibility for complex tasks like authentication, authorization, data movement, and data sharing. Globus can be used, in particular, to drive data transfers into and out of Science DMZs.

Kyle Chard, Foster, David Shiffett, Steven Tuecke and Jason Williams are co-authors of the paper and helped develop Globus at Argonne National Laboratory and the University of Chicago. In their paper, the authors note that the concept became feasible in 2015 as Globus and the Science DMZ became mature technologies.

“Together, Globus and the Science DMZ give researchers a powerful toolbox for conducting their research,” Dart said.

One portal incorporating the new design is the Research Data Archive managed by the National Center for Atmospheric Research, which contains a large and diverse collection of meteorological and oceanographic observations, operational and reanalysis model outputs, and remote sensing datasets to support atmospheric and geosciences research.

For example, a scientist working at a university could download data from the National Center for Atmospheric Research (NCAR) in Colorado and then use it to run simulations at DOE and NSF supercomputing centers in California and Illinois, and finally move the data to her home institution for analysis. To illustrate how the design works, Dart selected a 460-gigabyte dataset at NCAR, initiated a Globus transfer to DOE’s National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, logged in to his storage account and started the transfer. Four minutes later, the 5,141 files had been seamlessly transferred.

How the design works

The Modern Research Data Portal takes the single-server model of the traditional portal design and divides it among three distinct components.

  • A portal web server handles the search for and access to the specified data, and similar tasks.
  • The data servers, often called Data Transfer Nodes, are connected to high-speed networks through a specialized enclave, in this case the Science DMZ. The Science DMZ provides a dedicated, secure link to the data servers, but avoids common performance bottlenecks caused by typical designs not optimized for high-speed transfers.
  • Globus manages the authentication, data access and data transfers. Globus makes it possible for users to manage data irrespective of the location or storage system on which data reside and supports data transfer, sharing, and publication directly from those storage systems.

“The design pattern thus defines distinct roles for the web server, which manages who is allowed to do what; data servers, where authorized operations are performed on data; and external services, which orchestrate data access,” the authors wrote.

Globus is already used by tens of thousands of researchers worldwide with endpoints at more than 360 sites, so many researchers are familiar with its capabilities and rely on it on a regular basis. In fact, about 80 percent of major research universities and national labs in the U.S. use Globus.

At the same time, more than 100 research universities across the country have deployed Science DMZs, thanks to funding support through the National Science Foundation’s Campus Cyberinfrastructure Program.

A critical component of the system is “a little agent called Globus Connect, which is much like the Google Drive or Dropbox agents one would install on their own PCs,” Chard said. Globus Connect allows the Globus service to move data to and from the computer using high performance protocols and also HTTPS for direct access. It also allows users to share data dynamically with their peers.

According to Chard, the design provides research organizations with easy-to-use technology tools similar to those used by business startups to streamline development.

“If we look to industry, startup businesses can now build upon a suite of services to simplify what they need to build and manage themselves,” Chard said. “In a research setting, Globus has developed a stack of such capabilities that are needed by any research portal. Recently, we (Globus) have developed interfaces to make it trivial for developers to build upon these capabilities as a platform.”

“As a result of this design, users have a platform that allows them to easily place and transfer data without having to scale up the human effort as the amount of data scales up,” Dart said.

ESnet is a DOE Office of Science User Facility. Argonne and Lawrence Berkeley national laboratories are supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

About Computing Sciences at Berkeley Lab

The Lawrence Berkeley National Laboratory (Berkeley LabComputing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy’s research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe.

ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 6,000 scientists at national laboratories and universities, including those at Berkeley Lab’s Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation. NERSC and ESnet are DOE Office of Science User Facilities.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This