Networking, Data Experts Design a Better Portal for Scientific Discovery

By Jon Bashor

January 29, 2018

Jan. 29, 2018 — These days, it’s easy to overlook the fact that the World Wide Web was created nearly 30 years ago primarily to help researchers access and share scientific data. Over the years, the web has evolved into a tool that helps us eat, shop, travel, watch movies and even monitor our homes.

The Science DMZ includes multiple DTNs that provide for high-speed transfer between network and storage. Portal functions run on a portal server, located on the institution’s enterprise network. The DTNs need only speak the API of the data management service (Globus in this case).

Meanwhile, scientific instruments have become much more powerful, generating massive datasets, and international collaborations have proliferated. In this new era, the web has become an essential part of the scientific process, but the most common method of sharing research data remains firmly attached to the earliest days of the web. This can be a huge impediment to scientific discovery.

That’s why a team of networking experts from the Department of Energy’s Energy Sciences Network (ESnet), with the Globus team from the University of Chicago and Argonne National Laboratory, has designed a new approach that makes data sharing faster, more reliable and more secure. In an article published Jan. 15 in Peer J Comp Sci, the team describes their “The Modern Research Data Portal: a design pattern for networked, data-intensive science.”

“Both the size of datasets and the quantity of data objects has exploded, but the typical design of a data portal hasn’t really changed,” said co-author Eli Dart, a network engineer with the Department of Energy’s Energy Sciences Network, or ESnet. “Our new design preserves that ease of use, but easily scales up to handle the huge amounts of data associated with today’s science.”

Data portals, sometimes called science gateways, are web-based interfaces for access data storage and computing systems, allowing authorized users to access data and perform shared computations. As science becomes increasingly data-driven and collaborative, data portals are advancing research in materials, physics, astrophysics, cosmology, climate science and other fields.

The traditional portal is driven by a web server that is connected to a storage system and a database and processes users’ requests for data. While this simple design was straightforward to develop 25 years ago, it has increasingly become an obstacle to performance, usability and security.

“The problem with using old technology is that these portals don’t provide fast access to the data and they aren’t very flexible,” said lead author Ian Foster, who is the Arthur Holly Compton Professor at the University of Chicago and Director of the Data Science and Learning Division at Argonne National Laboratory. “Since each portal is developed as its own silo, the organization therefore must implement, and then manage and support, multiple complete software stacks to support each portal.”

The new portal design is built on two approaches developed to simplify and speed up transfers of large datasets.

  • The Science DMZ, which Dart developed, is a high-performance network design that connects large-scale data servers directly to high-speed networks and is increasingly used by research institutions to better manage data transfers.
  • Globus is a cloud-based service to which developers of data portals and other science services can outsource responsibility for complex tasks like authentication, authorization, data movement, and data sharing. Globus can be used, in particular, to drive data transfers into and out of Science DMZs.

Kyle Chard, Foster, David Shiffett, Steven Tuecke and Jason Williams are co-authors of the paper and helped develop Globus at Argonne National Laboratory and the University of Chicago. In their paper, the authors note that the concept became feasible in 2015 as Globus and the Science DMZ became mature technologies.

“Together, Globus and the Science DMZ give researchers a powerful toolbox for conducting their research,” Dart said.

One portal incorporating the new design is the Research Data Archive managed by the National Center for Atmospheric Research, which contains a large and diverse collection of meteorological and oceanographic observations, operational and reanalysis model outputs, and remote sensing datasets to support atmospheric and geosciences research.

For example, a scientist working at a university could download data from the National Center for Atmospheric Research (NCAR) in Colorado and then use it to run simulations at DOE and NSF supercomputing centers in California and Illinois, and finally move the data to her home institution for analysis. To illustrate how the design works, Dart selected a 460-gigabyte dataset at NCAR, initiated a Globus transfer to DOE’s National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, logged in to his storage account and started the transfer. Four minutes later, the 5,141 files had been seamlessly transferred.

How the design works

The Modern Research Data Portal takes the single-server model of the traditional portal design and divides it among three distinct components.

  • A portal web server handles the search for and access to the specified data, and similar tasks.
  • The data servers, often called Data Transfer Nodes, are connected to high-speed networks through a specialized enclave, in this case the Science DMZ. The Science DMZ provides a dedicated, secure link to the data servers, but avoids common performance bottlenecks caused by typical designs not optimized for high-speed transfers.
  • Globus manages the authentication, data access and data transfers. Globus makes it possible for users to manage data irrespective of the location or storage system on which data reside and supports data transfer, sharing, and publication directly from those storage systems.

“The design pattern thus defines distinct roles for the web server, which manages who is allowed to do what; data servers, where authorized operations are performed on data; and external services, which orchestrate data access,” the authors wrote.

Globus is already used by tens of thousands of researchers worldwide with endpoints at more than 360 sites, so many researchers are familiar with its capabilities and rely on it on a regular basis. In fact, about 80 percent of major research universities and national labs in the U.S. use Globus.

At the same time, more than 100 research universities across the country have deployed Science DMZs, thanks to funding support through the National Science Foundation’s Campus Cyberinfrastructure Program.

A critical component of the system is “a little agent called Globus Connect, which is much like the Google Drive or Dropbox agents one would install on their own PCs,” Chard said. Globus Connect allows the Globus service to move data to and from the computer using high performance protocols and also HTTPS for direct access. It also allows users to share data dynamically with their peers.

According to Chard, the design provides research organizations with easy-to-use technology tools similar to those used by business startups to streamline development.

“If we look to industry, startup businesses can now build upon a suite of services to simplify what they need to build and manage themselves,” Chard said. “In a research setting, Globus has developed a stack of such capabilities that are needed by any research portal. Recently, we (Globus) have developed interfaces to make it trivial for developers to build upon these capabilities as a platform.”

“As a result of this design, users have a platform that allows them to easily place and transfer data without having to scale up the human effort as the amount of data scales up,” Dart said.

ESnet is a DOE Office of Science User Facility. Argonne and Lawrence Berkeley national laboratories are supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

About Computing Sciences at Berkeley Lab

The Lawrence Berkeley National Laboratory (Berkeley LabComputing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy’s research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe.

ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 6,000 scientists at national laboratories and universities, including those at Berkeley Lab’s Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation. NERSC and ESnet are DOE Office of Science User Facilities.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire