Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

By Tiffany Trader

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling the competitive sector to deploy the latest AI technologies. Beyond the requirement for accurate and speedy seismic and reservoir simulation, oil and gas operations face torrents of sensor, geolocation, weather, drilling and seismic data. Just the sensor data alone from one off-shore rig can accrue to hundreds of terabytes of data annually, however most of this remains unanalyzed, dark data.

A collaboration between Nvidia and Baker Hughes, a GE company (BHGE) — one of the world’s largest oil field services companies — kicked off this week to address these big data challenges by applying deep learning and advanced analytics to improve efficiency and reduce the cost of energy exploration and distribution. The partnership leverages accelerated computing solutions from Nvidia, including DGX-1 servers, DGX Station and Jetson, combined with BHGE’s fullstream analytics software and digital twins to target end-to-end oil and gas operations.

Source: Nvidia

“It makes sense if you think about the nature of the operations, many remote sites, often in difficult locations,” said Binu Mathew, vice president of digital development at Baker Hughes. “But also when you look at it from an industry standpoint, there’s a ton of data being generated, a lot of information, and you often have it in two windows: you have an operator who will have multiple streams of data coming in, but relatively little actual information, because you’ve got to use your own experience to figure out what to do.

“On the flip side you have a lot of very smart, very capable engineers who are very good at building physics models, geological models, who often take weeks or months to fill out these models and run simulations, so they operate in that kind of timeframe. In between you’ve got a big challenge of not being able to have enough actual data crossing silos into a system that can analyze this data that you can take operational action from. This is the area that we at Baker Hughes Digital plan to address. We plan to do it because the technologies are now available in the industry: the rise of computational power and the rise of analytical techniques.”

Mathew’s account of the magnitude of data being generated by the industry leaves little doubt that this is an exascale-class challenge that requires new approaches and efficiencies.

“Even if you don’t talk about things like imaging data — which adds a whole order of magnitude to it — but, just in terms of what you’d call semi-structured data, essentially data coming up from various sensors, it’s in the hundreds of petabytes annually,” Mathew said. “And if you take a deep water rig you’re talking about in the region of a terabyte of data coming in per day. To analyze that kind of data at that kind of scale, the computational power will run into the exaflops and potentially well beyond.”

Source: Nvidia; BHGE

Like an increasing number of groups across academia and industry, Baker Hughes is tackling this extreme-scale challenge using a combination of physics-based and probabilistic models.

“You cannot analyze all that data without something like AI,” said Mathew. “If you go back to the practical models, the oil and gas industry has been very good at coming up with physics based models, and they will still be absolutely key at the core for modeling seismic phenomenon. But to scale those models requires combining physics models with the pattern matching capabilities that you get with AI. That’s the sea change we’ve seen in the last several years. If you look at image recognition and so on, deep learning techniques are now matching or exceeding human capabilities. So if you combine those things together you get into something that’s a step change from what’s been possible before.”

Nvidia is positioning its GPU technologies to fuel this transformation by powering accelerated analytics and deep learning across the spectrum of oil and gas operations.

“With GPU-accelerated analytics, well operators can visualize and analyze massive volumes of production and sensor data such as pump pressures, flow rates and temperatures,” stated Nvidia’s Tony Paikeday in a blog post. “This can give them better insight into costly issues, such as predicting which equipment might fail and how these failures could affect wider systems.

“Using deep learning and machine learning algorithms, oil and gas companies can determine the best way to optimize their operations as conditions change,” Paikeday continued. “For example, they can turn large volumes of seismic data images into 3D maps to improve the accuracy of reservoir predictions. More generally, they can use deep learning to train models to predict and improve the efficiency, reliability and safety of expensive drilling and production operations.”

The collaboration with BHGE will leverage Nvidia’s DGX-1 servers for training models in the datacenter; the smaller DGX Station for computing deskside or in remote, bandwidth-challenged sites; and the Nvidia Jetson for powering real-time inferencing at the edge.

Jim McHugh, Nvidia vice president and general manager, said in an interview that Nvidia excels at bringing together this raw processing power with an entire ecosystem: “Not only our own technology, like CUDA, Nvidia drivers, but we also bring all the leading frameworks together. So when people are going about doing deep learning and AI, and then the training aspect of it, the most optimized frameworks run on DGX, and are available via our NGC [Nvidia GPU cloud] as well.”

Cloud connectivity is a key enabler of the end-to-end platform. “One of the things that allows us to access that dark data is the concept of edge to cloud,” said Mathew. “So you’ve got the Jetsons out at the edge streaming into the clouds, where we can do the training of these models because training is much heavier and using DGX-1 boxes helps enormously with that task and running the actual models in production.”

Baker Hughes says it will work closely with customers to provide them with a turnkey solution. “The oil and gas industry isn’t homogeneous, so we can come out with a model that largely fits their needs but with enough flexibility to tweak,” said Mathew. “And some of that comes inherently from the capabilities you have in these techniques, they can auto-train themselves, the models will calibrate and train to the data that’s coming in. And we can also tweak the models themselves.”

For Nvidia, partnering with BHGE is part of a broader strategy to work with leading companies to bring AI into every industry. The self-proclaimed AI computing company believes technologies like deep learning will effect a strong virtuous cycle.

“The thing about AI is when you start leveraging the algorithms in deep neural networks, you end up developing an insatiable desire for data because it allows you to get new discoveries and connections and correlations that weren’t possible. We are coming from a time when people suffered from a data deluge; now we’re in something new where more data can come, that’s great,” said McHugh.

Doug Black, managing editor of EnterpriseTech, contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This