‘Next Generation’ Universe Simulation Is Most Advanced Yet

By Tiffany Trader

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate.

Like the original Illustris project, Illustris: The Next Generation (IllustrisTNG for short) follows the progression of a cube-shaped universe from just after the Big Bang to the present day using the power of supercomputing. New physics and other refinements have been added to the original model and the scope of the simulated universe has been expanded to 1 billion light-years per side (from 350 million light-years per side previously). The first results from the project have been published in three separate articles in the journal Monthly Notices of the Royal Astronomical Society (Vol. 475, Issue 1).

Visualization of the intensity of shock waves in the cosmic gas (blue) around collapsed dark matter structures (orange/white). Source: IllustrisTNG

A press release put out by the Max Planck Institute for Astrophysics, one of the partners, highlights the significance:

At its intersection points, the cosmic web of gas and dark matter predicted by IllustrisTNG contains galaxies quite similar to the shape and size of real galaxies. For the first time, hydrodynamical simulations could directly compute the detailed clustering pattern of galaxies in space. Comparison with observational data—including newest large surveys—demonstrate the high degree of realism of IllustrisTNG. In addition, the simulations predict how the cosmic web changes over time, in particular in relation to the underlying “back bone” of the dark matter cosmos.

“It is particularly fascinating that we can accurately predict the influence of supermassive black holes on the distribution of matter out to large scales,” said principal investigator Prof. Volker Springel of the Heidelberg Institute for Theoretical Studies. “This is crucial for reliably interpreting forthcoming cosmological measurements.”

The team also includes researchers from the Max Planck Institutes for Astronomy (MPIA, Heidelberg) and Astrophysics (MPA, Garching), Harvard University, the Massachusetts Institute of Technology (MIT) and the Flatiron Institute’s Center for Computational Astrophysics (CCA).

Thin slice through the cosmic large-scale structure in the largest simulation of the IllustrisTNG project. The displayed region extends by about 1.2 billion lightyears from left to right. The underlying simulation is presently the largest magneto-hydrodynamic simulation of galaxy formation, containing more than 30 billion volume elements and particles.

To capture the small-scale turbulent physics at the heart of galaxy formation, astrophysicists used a powerful version of the highly parallel moving mesh code, AREPO, which they deployed on Germany’s fastest supercomputer, Hazel Hen. Ancillary and test runs of the project were also run on the Stampede supercomputer at the Texas Advanced Computing Center, at the Hydra and Draco supercomputers at the Max Planck Computing and Data Facility, and on MIT/Harvard computing resources.

As detailed on the project website, IllustrisTNG actually consists of 18 simulations in total at varying scales. The largest (the highest-resolution TNG300 simulation) occupied 2,000 of Hazel Hen’s Xeons for just over two months. The simulations together generated more than 500 terabytes of data and will keep the team busy for years to come.

A visualization from the project shows the formation of a massive “late-type,” star-forming disk galaxy.

 

Read more about IllustrisTNG at their website.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This