The Food Industry’s Next Journey — from Mars to Exascale

By Scott Gibson, Oak Ridge National Laboratory

February 12, 2018

Editor’s note: Global food producer Mars, Incorporated participates in the US Exascale Computing Project’s Industry Council, which formed in February 2017 to facilitate information exchange between the ECP and the industrial user community. In this contributed article, ORNL’s Scott Gibson describes Mars’ efforts to leverage next-generation computing technologies to improve food safety and sustainability and create manufacturing efficiencies.

Mars, the world’s leading chocolate company and one of the largest food manufacturers, has a unique perspective on the impact that exascale computing will have on the food industry.

Creating a Safer and More Sustainable Food Supply Chain

“The food industry needs to address several grand challenges by developing innovative and sustainable solutions at the intersection of food, agriculture and health. Leveraging the power of technology will be critical on this journey. Exascale, for example, is going to be a radical enabler for helping the food, nutrition and agriculture sectors to evolve and possibly even revolutionize themselves to address these grand challenges,” said Harold Schmitz, chief science officer for Mars and director of the Mars Advanced Research Institute. Schmitz is a member of the US Department of Energy’s Exascale Computing Project Industry Council, a group of external advisors from some of the most prominent companies in the United States.

The Exascale Computing Project represents the next frontier in computing. An exascale ecosystem, expected in the 2021 time frame, will provide computational and data analysis performance at least 50 times more powerful than the fastest supercomputers in use today, and will maximize the benefits of high-performance computing (HPC) for many industries. In the case of the food industry, exascale will offer new solutions that can improve food manufacturing practices, yielding safer and more healthful products, more efficient industrial processes and a reduced carbon footprint.

“The power of exascale has the potential to advance the work of a first-of-its-kind effort led by Mars and the IBM Research – Almaden Lab, called the Consortium for Sequencing the Food Supply Chain,” Schmitz said. The consortium is centered on surveillance, risk assessment, and diagnoses of food-borne pathogens, and it is one of the few efforts in the world using the best tools of genomics, biology, and chemistry to understand nutrition, public health, and food safety.

“Although food safety has progressed immensely over the last hundred years—most notably through improvements in shelf life and the addition of macronutrients for preventive health—it remains a major challenge for food manufacturers,” Schmitz said. One in six Americans suffers a food-borne illness each year, and 3,000 of those affected die, according to the US Centers for Disease Control. Across the globe, almost 1 in 10 people fall ill every year from eating contaminated food and 420,000 perish as a result, reports the World Health Organization.

Increased industry and regulatory attention on pathogens such as Salmonella, Campylobacter, Listeria and aflatoxin has led to breakthroughs that make our food safer, but more must be done. Scientists need a method by which they can understand the pathogens in various contexts, including the microbial community, the microbiome and the broader food chain. Going one step further, they need a method that enables them to anticipate how the pathogen would behave in real scenarios, such as: a field where crops are grown and harvested; during travel on various transportation channels; or in factory environments where ingredients are processed.

“The consortium aims to revolutionize our understanding of how to predict pathogen outbreaks and discover what environments stimulate pathogens to behave badly, or what microbial environments are able to keep pathogen outbreaks under control,” Schmitz said. “In essence, we want to sequence the genome of the food supply chain and then use data analytics to understand its microbial community. We’re working at the intersection of HPC and the field of systems biology. In this case, the system is the food supply chain, from farm to fork”

Mars has used genome sequencing to progress its efforts to improve the supply-chain sustainability of one of its key ingredients: cocoa. It is a low-yield crop grown primarily in countries that lack the scientific and technological resources to modernize it.

“We realized we needed to give the most talented agricultural scientists a tool box to make the cocoa crop sustainable,” Schmitz said. That tool box is the genome. So, from 2008 to 2010, Mars, IBM, and the US Department of Agriculture Research Service and several other collaborators sequenced the genome of Theobroma cacao, an economically important tropical fruiting tree that is the source of chocolate.

“Analyzing genomic data allowed us to understand how diverse genotypes of cacao perform in different environments. This information is then used to breed superior varieties, with increased yields, quality and stress tolerance,” said Jim Kennedy, computational science leader at the Mars Advanced Research Institute. “We also use data analytics to understand how genetic and environmental factors contribute to pest and disease losses.  This information is used to develop environmentally friendly strategies to improve crop health.”

“Since our breakthrough on Theobroma cacao, we’ve already seen great improvements in cocoa,” Schmitz said. “When exascale comes online it will introduce food and agriculture data scientists to an exciting new world of opportunity.”

He explained that exascale will provide food data scientists with an unprecedented level of computing power to probe molecular food chemistry in a manner akin to how the pharmaceutical industry uses technology to study protein molecular dynamics.

“Modeling, simulation and data analytics with exascale will inform food design in a way that the empirical method, or trial and error, never could,” Schmitz said. “There is possibility for this to help unlock some of the biggest food and nutritional challenges that we face today.”

Designing More Efficient Manufacturing Processes

The HPC teams at Mars, which partner with DOE National Laboratories to bolster their computational science efforts, use modeling and simulation and data analytics to optimize not only the company’s supply-chain processes but also its design manufacturing processes. The teams employ tools such as computational fluid dynamics, discrete element method, and multiphysics-type deterministic models in HPC.

“We’re applying multiphysics models to better understand some of our essential processes such as extrusion,” Kennedy said. Extrusion is a fundamental process in which product ingredients are fed into a barrel and forced through a screw. The functions of mixing, sterilization, or cooking may take place in the barrel. Mars products such as confection candy, toffee candy, and pet food undergo extrusion.

“If we’re designing a new extrusion process, we’ll use modeling to optimize the design,” Kennedy said. “In the past, we would over-engineer and end up with an extruder that was one-and-a-half times bigger than what we needed. Modeling enables us to understand what the design parameters should be before we cut steel and build anything. But we’ve learned we need more computing power and speed, like what exascale will provide, to handle the complexity of our processes.”

Reducing the Greenhouse Gas Footprint

Exascale will enable the food industry to pioneer more efficient manufacturing processes that use less energy, in turn lessening its environmental impact.

“The food and agriculture sectors are among the largest contributors to climate change and the loss of biodiversity,” Schmitz said. “The energy required in global agriculture, the greenhouse gases emitted, and the vast amount of land used are all contributors. The good news is that the advancements in HPC and the eventual arrival of exascale computing will enable the industry to better use data science advances to improve its environmental and ecological footprint.”

Spreading the Use of Data Science

“The advent of exascale will help spread the use of data science more widely,” Kennedy said. At present, most companies are facing a shortage of data scientists while the need for digitization is expanding. At the same time, companies are trying to automate some of the tasks that would normally require a data scientist, such as cleaning, normalizing, or preprocessing data for analysis, simulation, or modeling.

“Exascale will make it possible for computers to run through scenarios faster and provide the end-user with data output in language that non-experts can understand,” Kennedy said. “Then they can go about slicing and dicing the data to prepare it for simulation. I think exascale will bring that capability to the masses so that they can directly work with their data and gain the insights and ask the questions they need for their research.”

Mars recently confirmed a collaboration agreement with the Joint Institute for Computational Sciences, an Institute of the University of Tennessee and Oak Ridge National Lab. The business plans to leverage the DOE computational infrastructure to find solutions for some of its most complex challenges and opportunities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This