Brookhaven Ramps Up Computing for National Security Effort

By John Russell

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. A week earlier, a report surfaced in a Russian media outlet that a group of Russian nuclear scientists had been arrested for using a government supercomputer to mine crypto-currency.

These very public episodes of computer misdeeds are a small portion of a growing and largely hidden iceberg of computer-related dangers with the potential to harm society. There are, of course, many active efforts to mitigate the ‘hacker’ onslaught as well as to use computational capabilities for U.S. national security purposes. Now, a formal effort is ramping up at Brookhaven National Laboratory (BNL).

Last fall, Adolfy Hoisie then at the Pacific Northwest National Laboratory was tapped to join Brookhaven’s expanding computing research and to become chair of the new Computing for National Security (CSN) Department. Since then Hoisie has been quickly drawing up the roadmap for the new effort – it’s charged with researching and developing novel technologies and applications for use in solving computing challenges in the national security arena.

The new CNS department is a recent addition to Brookhaven’s roughly three-year old Computational Science Initiative (CSI) which is intended to further computational capability and research at Brookhaven with a distinct emphasis on data science. Brookhaven is probably best known for its high-energy physics research. Most recently its National Synchrotron Light Source II is grabbing attention – it will be the brightest in the world when completed and accommodate 60 to 70 beamlines. Brookhaven also houses RHIC (Relativistic Heavy Ion Collider), which among other things is currently looking for the missing spin of the proton.

Adolfy Hoisie, Chair, Computing for National Security (CSN) Department, Brookhaven National Laboratory

Not surprisingly, the synchrotron, RHIC, and a variety of other experimental instruments at Brookhaven produce a lot of data. “We have the second largest scientific data archive in the U.S. and the fourth largest in the world,” said Hoisie, founding chairman of the CSN department. “On an annual basis, data to the tune of 35 petabytes are being ingested, 37 petabytes are being exported, and 400 petabytes of data analyzed. [What’s more] given the scientific community nature of this work, a lot of this data needs to be accessed at high bandwidth in and out of the experimental facilities and the Lab’s storage systems.”

Dealing with that mountain of experimental data is the main computational challenge at Brookhaven and Hoisie noted the CNS mission is ‘highly synergistic’ with those efforts.

“A large spectrum, if not a preponderance of applications, inspired by national security challenges, are in actual fact data sciences problems. It is speed of collection from various sources, whether the volume or velocity of data, the quality of data, analysis of data, which sets performance bounds for [security-related] applications. Just like data being streamed from a detector on an x-ray beam, data that is being streamed from a UAV (unmanned aerial vehicle) also has the challenges of too much data being generated and not enough bandwidth-to-the-ground in order for it to become actionable information and then make it back to the flying vehicle,” he said.

“The methodologies for data analysis, including machine learning and deep learning, required for national security concerns are very much synergistic with the challenges in data sciences. The spectrum of applications of interest to my department includes intelligence apps, cybersecurity, non-proliferation activities including international aspects of that, supply chain security, and a number of computational aspects of security of the computing infrastructure.”

Hoisie is no stranger to HPC or to building focused HPC research organizations. He joined Brookhaven from PNNL where he was the Director of the Advanced Computing, Mathematics, and Data Division, and the founding director of the Center for Advanced Technology Evaluation (CENATE). He plans to significantly expand the breadth, depth, and reach of the technologies and applications considered, with a focus on the full technology pipeline (basic research through devices, board, systems, to algorithms and applications).

Brookhaven, of course, already has substantial computational resources, a big chunk of which are co-located with the new synchrotron and dedicated to it. Predictably, I/O and storage is a particularly thorny issue and Hoisie noted Brookhaven has a large assortment of storage solutions and devices “from novel solutions all the way to discs and tapes of many generations that require computational resources in order to operate and do the data management.”

Brookhaven Light Source II

Currently, there is a second effort to centralize and expand the remaining computational infrastructure. The new CSN, along with much of the CSI, will be located in the new center.

“The first floor of the old synchrotron (National Synchrotron Light Source I) is being refurbished to a modern machine room through a DOE sponsored project. The approximate size of the area is 50,000 square feet. Significant power will be added to house the existing large scale computing and storage systems, and provide for the ability to grow in the future commensurate with the computing aspirations of Brookhaven. The new facility will also include computing Lab space for high accuracy and resolution measurement of computing technologies from device to systems, and to house computing systems “beyond Moore’s law” that will likely require special operating conditions,” said Hoisie.

Brookhaven has a diverse portfolio of ongoing research some of which will be tapped by CNS. “For example, there’s a significant scientific emphasis in materials design. That includes a center for nano materials, developing methodologies for material design and actual development of materials. We are trying to enmesh this expertise in materials with that in computing to tackle the challenges of computing at the device level,” Hoise said.

Hoisie’s group will also look at emerging technologies such as quantum computing. “That’s an area of major interest. We are looking at not only creating the appropriate facilities for siting quantum computing, such as the infrastructure for deep cooling and whatnot, but also looking at very significantly expanding the range of applications that are suitable for quantum computing. On that we have active discussions with IBM and others. You know, quantum computing is a little bit of a work in progress. I know I am stating the obvious but a lot depends on expanding significantly the range of applications to which quantum computing is applicable. We too often say, yes, quantum computing is very good for quantum chemistry or studying quantum effects in all kinds of processes, and cryptography, but there are many other areas we are trying to explore.”

Industry collaboration is an important part of the plan. In fact, noted Hoisie, “CSI, for example, is partly endowed by a New York State grant and part of the rules of engagement related to the grant and the management structure of Brookhaven [requires] development of a bona fide, high quality, high bandwidth interaction with regional powerhouses in computing including IBM. So we have quite a few ongoing in-depth discussions with potential partners that we hope soon to materialize to tackle together specific technologies.”

Throughout his computing career, Hoisie developed fruitful collaborations with technology providers with many collaborators such as IBM, AMD, Nvidia, and Data Vortex, just to name a few. He expects to do the same now.

Also, the modeling and simulation (ModSim) workshop series he helped organize and run will also continue including through his leadership of it and the participation of his new group. “The series of ModSim meetings will continue. Although I am not on the West Coast now we decided to organize them for continuity in Seattle at the University of Washington. These are events in which we are going to showcase technologies and applications including those national security interests and how ModSim is going to help. We’ve refreshed the committee to expand its base. That will continue as an interagency-funded operation that involves DOE, NSF, and a number of sectors from DoD,” Hoisie said.

Obviously these are still early days for the Computing for National Security initiative. A limited number of projects are still taking shape and there are few details available. That said Hoisie has high expectations:

“We have very significant plans to grow this department. The goal is to bring this Computing for National Security department, which is small at the moment, to the level of a high quality, and the emphasis is on the highest possible quality, of a top-notch national laboratory division level effort.

“This is the way in which we conducted HPC research for decades in my groups. There is the highest quality staff that we hire. There is active integration across the spectrum from technology and systems to the system software to applications and algorithms. And there is a healthy mixture of applied mathematics and computer science and domain sciences that are all contributing to the team effort. And there is a pipeline that we are interested in at all stages: as the technology matures you get more and more into areas that are related to computer science and mathematics and algorithm development and end up in tech development arena. These technologies materialize into boards, devices, systems and then into very large scale supercomputers that offer efficient solutions for solving science or national security problems. We absolutely plan to follow this way.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire