Neural Networking Shows Promise in Earthquake Monitoring

By John Russell

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Their study, published in Science Advances last week, centered on Oklahoma where before 2009 there were roughly two earthquakes of magnitude 3.0 or higher per year; in 2015 the number of such earthquakes exceeded 900.

Earthquake monitoring, particularly for small to medium magnitude earthquakes, has been pushed into the limelight in states where the fracking industry is booming and the related disposal of wastewater has been implicated in the rise in the number of earthquakes. The result has been contentious debate over fracking’s role in the problem and what appropriate steps for regulation and remediation are needed. Not surprisingly, efforts aimed at improving monitoring and understanding of the underlying science have accelerated.

Researchers Thibaut Perol (Harvard), Michaël Gharbi (MIT), Marine Denolle (Harvard) summarize the challenge nicely in their abstract:

“Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today’s most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. We leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for earthquake detection and location from a single waveform. We apply our technique to study the induced seismicity in Oklahoma, USA. We detect more than 17 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm is orders of magnitude faster than established methods.”

Their model is a deep convolutional network that takes a window of three-channel waveform seismogram data as input and predicts its label either as seismic noise or as an event with its geographic cluster (see figure below).

Fig. 2 ConvNetQuake architecture. The input is a waveform of 1000 samples on three channels. Each convolutional layer consists in 32 filters that downsample the data by a factor of 2 (see Eq. 1). After the eighth convolution, the features are flattened into a 1D vector of 128 features. A fully connected layer outputs the class scores.

The computational requirements were substantial. Both the parameter set and training data were too large to fit in memory prompting use of batched stochastic gradient descent algorithm. ConvNetQuake was implemented in TensorFlow and all of the trainings run on Nvidia Tesla K20Xm GPUs. “We trained for 32,000 iterations, which took approximately 1.5 hours,” write the authors who used the Odyssey cluster supported by the Faculty of Arts and Sciences Division of Science, Research Computing Group at Harvard University.

The researchers note that traditional approaches to earthquake detection generally fail to detect events buried in even the modest levels of seismic noise. Waveform autocorrelation is generally the most effective method to identify these repeating earthquakes from seismograms, but the method is computationally intensive and not practical for long time series. One approach to reduce the computation is to select a small set of representative waveforms as templates and correlate only these with the full-length continuous time series.

Bringing machine learning to bear on the problem isn’t new.  Recently, an unsupervised earthquake detection method, referred to as Fingerprint and Similarity Thresholding (FAST), has succeeded in reducing the complexity of the template matching approach.

“FAST extracts features, or fingerprints, from seismic waveforms, creates a bank of these fingerprints, and reduces the similarity search through locality-sensitive hashing. The scaling of FAST has shown promise with near-linear scaling to large data sets,” write the researchers.

Their work poses the problem as one of supervised classification – ConvNetQuake is trained on a large data set of labeled raw seismic waveforms and learns a compact representation that can discriminate seismic noise from earthquake signals. The waveforms are no longer classified by their similarity to other waveforms, as in previous work.

“Instead, we analyze the waveforms with a collection of nonlinear local filters. During the training phase, the filters are optimized to select features in the waveforms that are most relevant to classification. This bypasses the need to store a perpetually growing library of template waveforms. Owing to this representation, our algorithm generalizes well to earthquake signals never seen during training. It is more accurate than state-of-the-art algorithms and runs orders of magnitude faster,” they write. The figure below shows the data sets used.

Fig. 1 Earthquakes and seismic station in the region of interest (near Guthrie, OK) from 14 February 2014 to 16 November 2016. GS.OK029 and GS.OK027 are the two stations that record continuously the ground motion velocity. The colored circles are the events in the training data set. Each event is labeled with its corresponding area. The thick black lines delimit the six areas. The black squares are the events in the test data set. Two events from the test set are highlighted because they do not belong to the same earthquake sequences and are nonrepeating events.

The limitation of the methodology, they say, is the size of the training set required for good performances for earthquake detection and location. “Data augmentation has enabled great performance for earthquake detection, but larger catalogs of located events are needed to improve the performance of our probabilistic earthquake location approach. This makes the approach ill-suited to areas of low seismicity or areas where instrumentation is recent but well-suited to areas of high seismicity rates and well-instrumented.”

Link to paper: http://advances.sciencemag.org/content/4/2/e1700578/tab-pdf

Link to article discussing the work on The Verge: https://www.theverge.com/2018/2/14/17011396/ai-earthquake-detection-oklahoma-neural-network

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire