Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

By Tiffany Trader

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The servers are designed to operate using warm water, up to 45°C for general deployments and for special bid projects up to 50°C, lowering datacenter power consumption 30-40 percent compared to traditional cooling methods, according to Lenovo.

Nearly 6,500 of the ThinkSystems SD650s featuring Intel Xeon Platinum (Skylake) processors interconnected with Intel Omni-Path Architecture will be put into production at LRZ this year, providing the supercomputing center with 26.7 petaflops of peak performance, housed in a little over 100 racks.

The SuperMUC-NG supercomputer will be deployed with Lenovo’s new Lenovo Intelligent Computing Orchestrator (LiCO) and the Lenovo Energy Aware Runtime (EAR) software, a technology that dynamically optimizes system infrastructure power while applications are running.

Lenovo’s Scott Tease holding a ThinkSystem SD650 server

“Pretty much all the investments that we made to get to exascale LRZ is taking advantage of in this bid we won with them,” said Scott Tease, executive director, HPC and AI at Lenovo in an on-site briefing at Lenovo’s headquarters in Morrisville, North Carolina, last week. “We will start building systems and start shipping them in March; the floor will be ready by the end of April, and move-in starts in early May. We’ll be ready to do acceptance in September with final customer acceptance in November.”

The direct-water cooled design of the SD650 enables 85-90 percent heat recovery; the rest can easily be managed by a standard computer room air conditioner. The hot water coming off the servers can be recycled to warm buildings in the winter, as LRZ does with its petascale SuperMUC cluster, but the technology developed by Lenovo for SuperMUC-NG actually transforms that heat energy back into cooling for networking and storage components.

The endothermic magic trick only works with “high quality heat,” Lenovo thermal engineer Vinod Kamath told us, so LRZ’s SD650 servers were designed to be able to consume 50°C inlet temperatures. Water is piped out of the servers at 58-60°C depending on workload and sent through an adsorption chiller, where it is converted to chilled 20°C water suitable for cooling storage and networking components.

If you’re using chilled water to cool servers you can’t really take advantage of the economics of the adsorption chiller. With 60°C inlet water, the efficiency of Lenovo’s adsorption chiller is about 60 percent. If your energy source has a higher temperature, say 80-90°C then the extraction is even more efficient, but 60°C is good enough to realize significant savings.

Adsorption chilling will be applied to half the nodes of the next-gen LRZ install, generating about 600 kilowatts of chilled water capacity. This translates into more than 100,000 Euros a year in saved energy cost at the European site, where the rate for energy is about 16-18 Eurocents per kilowatt-hour (roughly 2-3 times the cost for similar sites in the United States). Lenovo claims a 45-50 percent energy savings with the endothermic reaction versus a traditional compressor, dropping the datacenter PUE from 1.6 to less than 1.1.

click to enlarge

The cooling solution can be traced back to 2012, when IBM (Lenovo acquired IBM’s x86 server business in 2014) was approached by LRZ to develop a system that was both powerful and extremely energy efficient. The first production implementation to come out of the partnership was the 9,200 node SuperMUC at LRZ, that achieved a number four ranking on the June 2012 Top500 list. The custom motherboard, developed with Intel, was cooled by water piped over compute and memory and back out of the system. LRZ used the hot water coming out of the system to heat parts of their building, which offset some of their overall energy costs.

The partnership also led to the deployment of the CooLMUC-2 cluster at LRZ in 2016. That system was the prototype for the next-gen LRZ cooling solution; it uses hot outlet water to drive adsorption chillers that generate refrigerated water, which is then used to cool some of the cluster’s disk storage systems.

“When we started doing this it was all about power cost,” said Tease. “It was all about datacenter optimization. Those things are still important, but we’re starting to see people recognize that water will allow them to do things that air can’t. I can do special processors that I can’t do with air; I can achieve densities that in the future I can’t do with air. We are really excited that we’ve got such a unique design, what we believe is an industry-leading design point as the market is coming to where we’ve been.”

The Lenovo ThinkSystem SD650 dual-node tray is designed for high-performance computing (HPC), large-scale cloud, and heavy simulations. One 6U NeXtScale n1200 enclosure houses up to six of these trays, accommodating a total of 12 SD650 compute nodes, 24 Intel Xeon Scalable Processors, 9.2TB of memory, 24 SFF SSDs or 12 SFF NVMe drives, and 24 M.2 boot drives.

Front view of the n1200 DWC enclosure. Source: Lenovo

The SD650 HPC servers have no system fans (except on the power supplies at the back of the rack), and operate at lower temperatures when compared to standard air-cooled systems. Chillers are not needed for most customers, which translates into further savings and a lower total cost of ownership. The new server supports high-speed EDR InfiniBand and Omni-Path fabrics as well as standard SSDs, NVMe SSDs, and M.2 boot SSDs.

In demoing the SD650, Kamath showed how the water supply comes in through the 6U NeXtScale n1200 chassis and flows into the servers. “We have a calibrated flow split between the processor and the memory to tune the heat transfer,” he said. “We recognize that networking devices are power hungry now and will be more so in the future, so the water that splits to the memory is coupled to a drive, an NVMe or SSD, and coupled to a network device, like ConnectX-5 or OPA, and then the water flows and connects back to conduction point.”

Two Lenovo ThinkSystem SD650 servers on the compute tray that provides water cooling. Source: Lenovo

Lenovo designed the system with special attention to the next-generation memory technologies. Each server has 12 DIMM slots for truDDR4 memory but there are actually 16 slots total. Four have been reserved for 3D-XPoint (also known as Apache Pass or AEP memory). The cooling system is able to extract 10 watts on standard DIMMs, and for 3D XPoint and other higher-powered memory future designs, they’ll have two water lines going through a DIMM that can consume 18 watts. Lenovo also provides a handy DIMM removal tool making it easy to swap out memory.

Lenovo has been picking up major HPC system awards in Europe since acquiring IBM’s x86 business three and a half years ago. It has the fastest supercomputer in Spain, Italy, Denmark, Norway, Australia, Canada, and soon in Germany with LRZ. It has also been making in-roads with its warm water cooling solutions. In addition to its systems at LRZ, it has warm water HPC installations at Peking University (first ever in China), India Space Administration (first ever in India), and a multi-university system in Norway.

Liquid cooling is becoming mainstream in HPC, especially in environments where constraints on space boost density requirements or in expensive energy zones. Lenovo tells customers that when it comes to electricity prices, anything over 15 cents per kilowatt hour will provide a return on investment within one year. Another benefit of removing more heat is that CPUs can run in “turbo” mode nonstop, which can squeeze an additional 10 percent performance from them.

The SD650 is managed by Lenovo Intelligent Computing Orchestrator (LiCO), a management suite with an intuitive GUI that supports management of large HPC cluster resources and accelerates development of AI applications. LiCO works with the most common AI frameworks, including TensorFlow, Caffe and Microsoft CNTK.

SD650 system architectural block diagram. Source: Lenovo
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This