Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

By Tiffany Trader

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The servers are designed to operate using warm water, up to 45°C for general deployments and for special bid projects up to 50°C, lowering datacenter power consumption 30-40 percent compared to traditional cooling methods, according to Lenovo.

Nearly 6,500 of the ThinkSystems SD650s featuring Intel Xeon Platinum (Skylake) processors interconnected with Intel Omni-Path Architecture will be put into production at LRZ this year, providing the supercomputing center with 26.7 petaflops of peak performance, housed in a little over 100 racks.

The SuperMUC-NG supercomputer will be deployed with Lenovo’s new Lenovo Intelligent Computing Orchestrator (LiCO) and the Lenovo Energy Aware Runtime (EAR) software, a technology that dynamically optimizes system infrastructure power while applications are running.

Lenovo’s Scott Tease holding a ThinkSystem SD650 server

“Pretty much all the investments that we made to get to exascale LRZ is taking advantage of in this bid we won with them,” said Scott Tease, executive director, HPC and AI at Lenovo in an on-site briefing at Lenovo’s headquarters in Morrisville, North Carolina, last week. “We will start building systems and start shipping them in March; the floor will be ready by the end of April, and move-in starts in early May. We’ll be ready to do acceptance in September with final customer acceptance in November.”

The direct-water cooled design of the SD650 enables 85-90 percent heat recovery; the rest can easily be managed by a standard computer room air conditioner. The hot water coming off the servers can be recycled to warm buildings in the winter, as LRZ does with its petascale SuperMUC cluster, but the technology developed by Lenovo for SuperMUC-NG actually transforms that heat energy back into cooling for networking and storage components.

The endothermic magic trick only works with “high quality heat,” Lenovo thermal engineer Vinod Kamath told us, so LRZ’s SD650 servers were designed to be able to consume 50°C inlet temperatures. Water is piped out of the servers at 58-60°C depending on workload and sent through an adsorption chiller, where it is converted to chilled 20°C water suitable for cooling storage and networking components.

If you’re using chilled water to cool servers you can’t really take advantage of the economics of the adsorption chiller. With 60°C inlet water, the efficiency of Lenovo’s adsorption chiller is about 60 percent. If your energy source has a higher temperature, say 80-90°C then the extraction is even more efficient, but 60°C is good enough to realize significant savings.

Adsorption chilling will be applied to half the nodes of the next-gen LRZ install, generating about 600 kilowatts of chilled water capacity. This translates into more than 100,000 Euros a year in saved energy cost at the European site, where the rate for energy is about 16-18 Eurocents per kilowatt-hour (roughly 2-3 times the cost for similar sites in the United States). Lenovo claims a 45-50 percent energy savings with the endothermic reaction versus a traditional compressor, dropping the datacenter PUE from 1.6 to less than 1.1.

click to enlarge

The cooling solution can be traced back to 2012, when IBM (Lenovo acquired IBM’s x86 server business in 2014) was approached by LRZ to develop a system that was both powerful and extremely energy efficient. The first production implementation to come out of the partnership was the 9,200 node SuperMUC at LRZ, that achieved a number four ranking on the June 2012 Top500 list. The custom motherboard, developed with Intel, was cooled by water piped over compute and memory and back out of the system. LRZ used the hot water coming out of the system to heat parts of their building, which offset some of their overall energy costs.

The partnership also led to the deployment of the CooLMUC-2 cluster at LRZ in 2016. That system was the prototype for the next-gen LRZ cooling solution; it uses hot outlet water to drive adsorption chillers that generate refrigerated water, which is then used to cool some of the cluster’s disk storage systems.

“When we started doing this it was all about power cost,” said Tease. “It was all about datacenter optimization. Those things are still important, but we’re starting to see people recognize that water will allow them to do things that air can’t. I can do special processors that I can’t do with air; I can achieve densities that in the future I can’t do with air. We are really excited that we’ve got such a unique design, what we believe is an industry-leading design point as the market is coming to where we’ve been.”

The Lenovo ThinkSystem SD650 dual-node tray is designed for high-performance computing (HPC), large-scale cloud, and heavy simulations. One 6U NeXtScale n1200 enclosure houses up to six of these trays, accommodating a total of 12 SD650 compute nodes, 24 Intel Xeon Scalable Processors, 9.2TB of memory, 24 SFF SSDs or 12 SFF NVMe drives, and 24 M.2 boot drives.

Front view of the n1200 DWC enclosure. Source: Lenovo

The SD650 HPC servers have no system fans (except on the power supplies at the back of the rack), and operate at lower temperatures when compared to standard air-cooled systems. Chillers are not needed for most customers, which translates into further savings and a lower total cost of ownership. The new server supports high-speed EDR InfiniBand and Omni-Path fabrics as well as standard SSDs, NVMe SSDs, and M.2 boot SSDs.

In demoing the SD650, Kamath showed how the water supply comes in through the 6U NeXtScale n1200 chassis and flows into the servers. “We have a calibrated flow split between the processor and the memory to tune the heat transfer,” he said. “We recognize that networking devices are power hungry now and will be more so in the future, so the water that splits to the memory is coupled to a drive, an NVMe or SSD, and coupled to a network device, like ConnectX-5 or OPA, and then the water flows and connects back to conduction point.”

Two Lenovo ThinkSystem SD650 servers on the compute tray that provides water cooling. Source: Lenovo

Lenovo designed the system with special attention to the next-generation memory technologies. Each server has 12 DIMM slots for truDDR4 memory but there are actually 16 slots total. Four have been reserved for 3D-XPoint (also known as Apache Pass or AEP memory). The cooling system is able to extract 10 watts on standard DIMMs, and for 3D XPoint and other higher-powered memory future designs, they’ll have two water lines going through a DIMM that can consume 18 watts. Lenovo also provides a handy DIMM removal tool making it easy to swap out memory.

Lenovo has been picking up major HPC system awards in Europe since acquiring IBM’s x86 business three and a half years ago. It has the fastest supercomputer in Spain, Italy, Denmark, Norway, Australia, Canada, and soon in Germany with LRZ. It has also been making in-roads with its warm water cooling solutions. In addition to its systems at LRZ, it has warm water HPC installations at Peking University (first ever in China), India Space Administration (first ever in India), and a multi-university system in Norway.

Liquid cooling is becoming mainstream in HPC, especially in environments where constraints on space boost density requirements or in expensive energy zones. Lenovo tells customers that when it comes to electricity prices, anything over 15 cents per kilowatt hour will provide a return on investment within one year. Another benefit of removing more heat is that CPUs can run in “turbo” mode nonstop, which can squeeze an additional 10 percent performance from them.

The SD650 is managed by Lenovo Intelligent Computing Orchestrator (LiCO), a management suite with an intuitive GUI that supports management of large HPC cluster resources and accelerates development of AI applications. LiCO works with the most common AI frameworks, including TensorFlow, Caffe and Microsoft CNTK.

SD650 system architectural block diagram. Source: Lenovo
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire