Start-up Aims AI at Automated Tuning of Complex Systems

By Doug Black

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstring performance. For performance engineers still using manual tuning methods, systems optimization is a time-eating hydra-headed monster that poses a virtually infinite number of possible adjustments and configurations for trial-and-error testing.

Enter AI.

Start-up Concertio today launched what it said is the first machine learning-based tool aimed at making applications and systems operate for maximized performance by optimizing the myriad of configuration settings used in complex systems. While its initial product, Optimizer Studio, automates systems diagnostics and generates a “grocery list” of adjustments that systems engineers and IT managers then review and implement, the next iteration of the technology (Optimizer Runtime) will automate both diagnostics and tuning implementation.

None less than Mellanox has tested Concertio’s effectiveness on its own networking technology. As part of today’s launch, Concerto announced the results of a test involving Mellanox’s ConnectX-3 Pro Ethernet cards that compared performance after automated testing by Optimizer Studio against manual tuning methods used by Mellanox performance engineers.

The network cards were delivered in their off-the-shelf default settings, and then the Mellanox engineers and Concertio were informed of the workload the cards would be used for. Optimizer Studio ran against nine ConnectX-3 Pro specific knobs representing millions of option combinations. The tool’s workload classification engine and reinforcement learning techniques modeled the target workload, detecting different workload phases, and experimenting with various knob configurations in each phase. It then produced a report showing the optimal settings for the specific use-case.

The test result: Concertio won.

“In the comparison test, Optimizer Studio’s automated run improved performance in the target use-case by 80 percent, surpassing the 62 percent we achieved by manual tuning,” said Amir Ancel, performance group director at Mellanox. “Optimizer Studio’s automated tuning algorithms allow us to focus on high-level optimization, leaving the mundane low-level parameter optimizations to software.”

Built for traditional datacenters, hyperscale datacenters and high-performance computing systems in the cloud or on-premises, Optimizer Studio monitors and learns from the interactions between applications and systems, according to Concertio.

As of now, the tools support Linux-based systems running on Intel CPUs. Concertio said it intends to broaden its portfolio of supported technologies in upcoming product iterations.

“Tuning used to be easy,” Dr. Tomer Morad, Concertio co-founder and CEO, shared. “There were only a handful of knobs, and you’d put a performance engineer on that and tweak some settings and get some good results. But today we are already in the hundreds of knobs. It’s exploding and become almost impossible to get to a very good result because the parameter space is practically limitless. If you have 100 binary knobs it’s practically limitless, you cannot check everything. So you need some kind of automatic tool to help you with that.”

Tuning variables, called tunable knobs, include settings across hardware, firmware, the operating system and applications such as:

  • CPU hardware, including symmetric multi-threading, cache prefetching and cache partitioning configuration; peripheral hardware, including PCIe maximum read request size, network interrupt affinity and network task offloading
  • Firmware, including power states of the CPU
  • Operating system, including choice of IO or task scheduler, NUMA balancing and memory migration, thread affinity and page cache
  • Applications, including application framework settings (e.g., Spark), application component (e.g., MongoDB database) settings, and application-defined knobs

With so many variables, Morad said, performance engineers can’t be expected to know about all of the available knobs, and to predict their effects on one another. IT professionals must also occasionally tune their systems, but it’s difficult for them to maintain experts on all system internals, he said. Too often, engineers test and set optimal settings for a few knobs they are more familiar with, leaving the rest in default settings that were in place when the equipment was delivered. In some cases, he said, system tuning is overlooked entirely due to the complexity involved, and systems remain at inefficient under-performing factory settings.

Beyond application performance tuning, Morad said the tool can be used for cutting cloud and data center costs by finding system configurations that use fewer resources, and it can be utilized by hardware and software product vendors to identify optimized off-the-shelf configurations for shipment to customers or reseller. It also can be used for maximizing public benchmark performance for marketing purposes (including LINPACK).

Privately-held Concertio (previously called DatArcs) was founded in 2016 and is based in New York City. The company is part of the Runway Program at the Jacobs Technion-Cornell Institute of Cornell Tech in New York, and it’s with the Intel Ingenuity Partner Program.

“Tailor-tuned systems can significantly outperform baseline general-purpose systems, but the number of configurable settings has reached into the hundreds – way too many for any human team to effectively tune and test,” said Concertio co-founder and CTO Andrey Gelman. “It used to be merely a gap that could be bridged by human tuning and testing, but with the increasing hardware and software complexity, it’s exploding into a chasm where human performance tuning is netting diminishing returns, leaving these expensive systems bottlenecked and inefficient.”

A version of this article originally appeared on our sister site, EnterpriseTech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This