Start-up Aims AI at Automated Tuning of Complex Systems

By Doug Black

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstring performance. For performance engineers still using manual tuning methods, systems optimization is a time-eating hydra-headed monster that poses a virtually infinite number of possible adjustments and configurations for trial-and-error testing.

Enter AI.

Start-up Concertio today launched what it said is the first machine learning-based tool aimed at making applications and systems operate for maximized performance by optimizing the myriad of configuration settings used in complex systems. While its initial product, Optimizer Studio, automates systems diagnostics and generates a “grocery list” of adjustments that systems engineers and IT managers then review and implement, the next iteration of the technology (Optimizer Runtime) will automate both diagnostics and tuning implementation.

None less than Mellanox has tested Concertio’s effectiveness on its own networking technology. As part of today’s launch, Concerto announced the results of a test involving Mellanox’s ConnectX-3 Pro Ethernet cards that compared performance after automated testing by Optimizer Studio against manual tuning methods used by Mellanox performance engineers.

The network cards were delivered in their off-the-shelf default settings, and then the Mellanox engineers and Concertio were informed of the workload the cards would be used for. Optimizer Studio ran against nine ConnectX-3 Pro specific knobs representing millions of option combinations. The tool’s workload classification engine and reinforcement learning techniques modeled the target workload, detecting different workload phases, and experimenting with various knob configurations in each phase. It then produced a report showing the optimal settings for the specific use-case.

The test result: Concertio won.

“In the comparison test, Optimizer Studio’s automated run improved performance in the target use-case by 80 percent, surpassing the 62 percent we achieved by manual tuning,” said Amir Ancel, performance group director at Mellanox. “Optimizer Studio’s automated tuning algorithms allow us to focus on high-level optimization, leaving the mundane low-level parameter optimizations to software.”

Built for traditional datacenters, hyperscale datacenters and high-performance computing systems in the cloud or on-premises, Optimizer Studio monitors and learns from the interactions between applications and systems, according to Concertio.

As of now, the tools support Linux-based systems running on Intel CPUs. Concertio said it intends to broaden its portfolio of supported technologies in upcoming product iterations.

“Tuning used to be easy,” Dr. Tomer Morad, Concertio co-founder and CEO, shared. “There were only a handful of knobs, and you’d put a performance engineer on that and tweak some settings and get some good results. But today we are already in the hundreds of knobs. It’s exploding and become almost impossible to get to a very good result because the parameter space is practically limitless. If you have 100 binary knobs it’s practically limitless, you cannot check everything. So you need some kind of automatic tool to help you with that.”

Tuning variables, called tunable knobs, include settings across hardware, firmware, the operating system and applications such as:

  • CPU hardware, including symmetric multi-threading, cache prefetching and cache partitioning configuration; peripheral hardware, including PCIe maximum read request size, network interrupt affinity and network task offloading
  • Firmware, including power states of the CPU
  • Operating system, including choice of IO or task scheduler, NUMA balancing and memory migration, thread affinity and page cache
  • Applications, including application framework settings (e.g., Spark), application component (e.g., MongoDB database) settings, and application-defined knobs

With so many variables, Morad said, performance engineers can’t be expected to know about all of the available knobs, and to predict their effects on one another. IT professionals must also occasionally tune their systems, but it’s difficult for them to maintain experts on all system internals, he said. Too often, engineers test and set optimal settings for a few knobs they are more familiar with, leaving the rest in default settings that were in place when the equipment was delivered. In some cases, he said, system tuning is overlooked entirely due to the complexity involved, and systems remain at inefficient under-performing factory settings.

Beyond application performance tuning, Morad said the tool can be used for cutting cloud and data center costs by finding system configurations that use fewer resources, and it can be utilized by hardware and software product vendors to identify optimized off-the-shelf configurations for shipment to customers or reseller. It also can be used for maximizing public benchmark performance for marketing purposes (including LINPACK).

Privately-held Concertio (previously called DatArcs) was founded in 2016 and is based in New York City. The company is part of the Runway Program at the Jacobs Technion-Cornell Institute of Cornell Tech in New York, and it’s with the Intel Ingenuity Partner Program.

“Tailor-tuned systems can significantly outperform baseline general-purpose systems, but the number of configurable settings has reached into the hundreds – way too many for any human team to effectively tune and test,” said Concertio co-founder and CTO Andrey Gelman. “It used to be merely a gap that could be bridged by human tuning and testing, but with the increasing hardware and software complexity, it’s exploding into a chasm where human performance tuning is netting diminishing returns, leaving these expensive systems bottlenecked and inefficient.”

A version of this article originally appeared on our sister site, EnterpriseTech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that announcing key server wins, important cloud provider wins Read more…

By John Russell

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that Read more…

By John Russell

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This