Start-up Aims AI at Automated Tuning of Complex Systems

By Doug Black

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstring performance. For performance engineers still using manual tuning methods, systems optimization is a time-eating hydra-headed monster that poses a virtually infinite number of possible adjustments and configurations for trial-and-error testing.

Enter AI.

Start-up Concertio today launched what it said is the first machine learning-based tool aimed at making applications and systems operate for maximized performance by optimizing the myriad of configuration settings used in complex systems. While its initial product, Optimizer Studio, automates systems diagnostics and generates a “grocery list” of adjustments that systems engineers and IT managers then review and implement, the next iteration of the technology (Optimizer Runtime) will automate both diagnostics and tuning implementation.

None less than Mellanox has tested Concertio’s effectiveness on its own networking technology. As part of today’s launch, Concerto announced the results of a test involving Mellanox’s ConnectX-3 Pro Ethernet cards that compared performance after automated testing by Optimizer Studio against manual tuning methods used by Mellanox performance engineers.

The network cards were delivered in their off-the-shelf default settings, and then the Mellanox engineers and Concertio were informed of the workload the cards would be used for. Optimizer Studio ran against nine ConnectX-3 Pro specific knobs representing millions of option combinations. The tool’s workload classification engine and reinforcement learning techniques modeled the target workload, detecting different workload phases, and experimenting with various knob configurations in each phase. It then produced a report showing the optimal settings for the specific use-case.

The test result: Concertio won.

“In the comparison test, Optimizer Studio’s automated run improved performance in the target use-case by 80 percent, surpassing the 62 percent we achieved by manual tuning,” said Amir Ancel, performance group director at Mellanox. “Optimizer Studio’s automated tuning algorithms allow us to focus on high-level optimization, leaving the mundane low-level parameter optimizations to software.”

Built for traditional datacenters, hyperscale datacenters and high-performance computing systems in the cloud or on-premises, Optimizer Studio monitors and learns from the interactions between applications and systems, according to Concertio.

As of now, the tools support Linux-based systems running on Intel CPUs. Concertio said it intends to broaden its portfolio of supported technologies in upcoming product iterations.

“Tuning used to be easy,” Dr. Tomer Morad, Concertio co-founder and CEO, shared. “There were only a handful of knobs, and you’d put a performance engineer on that and tweak some settings and get some good results. But today we are already in the hundreds of knobs. It’s exploding and become almost impossible to get to a very good result because the parameter space is practically limitless. If you have 100 binary knobs it’s practically limitless, you cannot check everything. So you need some kind of automatic tool to help you with that.”

Tuning variables, called tunable knobs, include settings across hardware, firmware, the operating system and applications such as:

  • CPU hardware, including symmetric multi-threading, cache prefetching and cache partitioning configuration; peripheral hardware, including PCIe maximum read request size, network interrupt affinity and network task offloading
  • Firmware, including power states of the CPU
  • Operating system, including choice of IO or task scheduler, NUMA balancing and memory migration, thread affinity and page cache
  • Applications, including application framework settings (e.g., Spark), application component (e.g., MongoDB database) settings, and application-defined knobs

With so many variables, Morad said, performance engineers can’t be expected to know about all of the available knobs, and to predict their effects on one another. IT professionals must also occasionally tune their systems, but it’s difficult for them to maintain experts on all system internals, he said. Too often, engineers test and set optimal settings for a few knobs they are more familiar with, leaving the rest in default settings that were in place when the equipment was delivered. In some cases, he said, system tuning is overlooked entirely due to the complexity involved, and systems remain at inefficient under-performing factory settings.

Beyond application performance tuning, Morad said the tool can be used for cutting cloud and data center costs by finding system configurations that use fewer resources, and it can be utilized by hardware and software product vendors to identify optimized off-the-shelf configurations for shipment to customers or reseller. It also can be used for maximizing public benchmark performance for marketing purposes (including LINPACK).

Privately-held Concertio (previously called DatArcs) was founded in 2016 and is based in New York City. The company is part of the Runway Program at the Jacobs Technion-Cornell Institute of Cornell Tech in New York, and it’s with the Intel Ingenuity Partner Program.

“Tailor-tuned systems can significantly outperform baseline general-purpose systems, but the number of configurable settings has reached into the hundreds – way too many for any human team to effectively tune and test,” said Concertio co-founder and CTO Andrey Gelman. “It used to be merely a gap that could be bridged by human tuning and testing, but with the increasing hardware and software complexity, it’s exploding into a chasm where human performance tuning is netting diminishing returns, leaving these expensive systems bottlenecked and inefficient.”

A version of this article originally appeared on our sister site, EnterpriseTech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This