Jeff Dean Thinks AI Can Solve Grand Challenges–Here’s How

By Alex Woodie

March 13, 2018

In 2008, the National Academy of Engineering presented 14 Grand Challenges that, if solved, had the potential to radically improve the world. Thanks to recent breakthroughs in artificial intelligence – specifically, the advent of deep neural networks — we’re on pace to solve some of them, Google Senior Fellow Jeff Dean said last week at the Strata Data Conference.

The Academy certainly didn’t lack for ambition 10 years ago when it drew up the 14 Grand Challenges. Delivering a solution for any one of them – such as providing energy from nuclear fusion or finding out how to sequester carbon – could have a dramatic impact on billions of people’s lives.

As a result of advances in deep learning techniques, the presence of enormous data collections, and the availability of massive server clusters, we will be able to compute our way toward solving them, Dean told a packed room of attendees during his presentation Thursday afternoon at the San Jose McEnery Convention Center.

“I actually think machine learning is going to help with all of these,” the legendary computer scientist said. “I think there are actually going to be significant breakthroughs in some of these Grand Challenges that are at least in part fueled by the fact that we now have machine learning at scale with many of these techniques that can really push us forward in the areas of commuter vision, language understanding, speech recognition, and automating and solving engineering problems.”

Dean explained how he did an undergraduate thesis way back in 1990 on parallel training of neural networks. He was convinced that, if we could just get more compute capacity on neural networks, then we could use them to do “more interesting things.” Dean played around with the technology running on a cluster with 64 processors, which was actually pretty big for the day.

“I thought if we could get a 60x speedup, it would be great, we could tackle really big problems,” said Dean, one of Datanami‘s 2017 People to Watch. “It turned out what we actually really needed was a 1,000,000x speedup, not 60x. But we have that now. It’s affordable. That I think is why we’re here today, why we’re now seeing the power of neural networks paired with large, substantial amounts of computing really to solve problems that we didn’t know how to solve the other way.”

Here’s how deep learning has put us on the cusp of solving some of the Grand Challenges, according to Dean…

Visit our sister pub, Datanami, for the rest of the story.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&D on energy technologies s Read more…

By Tiffany Trader

Training Time Slashed for Deep Learning

August 14, 2018

Fast.ai, an organization offering free courses on deep learning, claimed a new speed record for training a popular image database using Nvidia GPUs running on public cloud infrastructure. A pair of researchers trained Read more…

By George Leopold

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the Read more…

By Rob Farber

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

Rigetti Eyes Scaling with 128-Qubit Architecture

August 10, 2018

Rigetti Computing plans to build a 128-qubit quantum computer based on an equivalent quantum processor that leverages emerging hybrid computing algorithms used to test programs and potential applications. Founded in 2 Read more…

By George Leopold

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Google is First Partner in NIH’s STRIDES Effort to Speed Discovery in the Cloud

July 31, 2018

The National Institutes of Health, with the help of Google, last week launched STRIDES - Science and Technology Research Infrastructure for Discovery, Experimen Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This