How the Cloud Is Falling Short for HPC

By Chris Downing

March 15, 2018

Editor’s note: The case for HPC in the cloud is growing stronger, but still has a way to go, especially for the more traditional HPC segments in the public sector. In this perspective piece, Red Oak’s Chris Downing walks us through what public cloud vendors are doing well and where there is room for improvement.

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The most often touted reason for this is cost – but such a simple description hides a series of more interesting causes for the lukewarm relationship the HPC community has with public cloud providers. Here, we explore how things stand in 2018 – and more importantly, what the cloud vendors need to do if they want to make their services competitive with on-premise HPC.

Performance

Despite the huge volume of SaaS and PaaS solutions available within the cloud, the nature of HPC is such that vanilla IaaS servers and associated networking are likely to form the bulk of research computing cloud usage for the foreseeable future. The overheads of virtualisation have previously been cited as a good reason not to move into the cloud, but this argument holds water less and less as time goes on; both because researchers are generally willing to pay an (admittedly smaller) overhead to make use of containerisation, and because the actual overhead is decreasing as cloud vendors shift to custom, external silicon for managing their infrastructure. To address cases where the small remaining overhead is still too much, bare-metal infrastructure is starting to show up in the price lists of major clouds.

Networking

Without low-latency interconnects, cloud usage will be effectively impossible for massive MPI jobs typical of the most ambitious “grand challenge” research. Azure tries to fill the niche for providing this sort of hardware in the public cloud – at present they miss the mark due to high costs, though that is a problem which can be remedied easily given enough internal political will.

It is not a given that cloud providers must offer low-latency interconnects more widely, but if they make the business decision not to do so, they must recognise that there will always be a segment of the market which is closed to them. Rather than trying to bluff their way into the high-end HPC market, cloud vendors who choose to eschew the low-latency segment should focus on their genuine strength; the near-infinite scale they can offer for high-throughput workloads and cloudbursting of single-node applications.

Data movement

Before we even reach the complexities of managing data once it is in the cloud, there are issues to be faced with getting it there, and eventually getting it back.

All three major cloud providers have set up very similar schemes for academic research customers which include discounted or free data egress; effectively, the costs for moving data out of the cloud are waived as long as they represent no more than 15% of the total bill for the institution. At the moment then, there is no obvious reason to favour one provider over the others on this front.

For industry users, data being held hostage as it grows in volume is less of a concern – the chain of ownership is much more straightforward, and as long as the company retains an account with the cloud provider, someone will be able to access the files (whether they are in a position to make decisions about data migration is another question…). Data produced by university researchers is more tricky in this regard – funding council rules are deliberately non-specific about what is actually required from researchers when they make a data management plan. The general consensus is that published data needs some level of discoverability and cataloguing; implementing a research data service in the cloud is likely to be far easier in the long-term than providing an on-premise solution, but requires a level of commitment to operational spending that many institutions would not be comfortable with. Cloud providers could certainly afford to make this easier.

Storage

The storage landscape within the cloud presents another complication, one which many HPC users will be far less prepared for than simply tuning their core-count and wall-clock times. Migrating data directly in and out of instance-attached block storage volumes via SSH might be the way to go for short, simple tasks – but any practical workflow with data persisting across jobs is going to need to make use of object storage.

While the mechanisms to interact with object storage are fairly simple for all three cloud providers, the breadth of options available when considering what to do next (stick with standard storage, have a tiered model with migration policies, external visibility, etc) could lead to a lot of analysis paralysis. For researchers who just want to run some jobs, storage is the first element of the cloud they will touch which is likely to provoke a strong desire to give in and go back to waiting for time on the local cluster.

For more demanding users, the problems only get worse – none of the built-in storage solutions available across the public cloud providers is going to be suitable for applications with high bandwidth requirements. Parallel file systems built on top of block storage are the obvious fix, but can quickly become expensive even without the licensing costs for a commercially supported solution. Managing high-performance storage on an individual level is going to require more heavyweight automation approaches than many HPC researchers will be used to deploying, and so local administrators could suddenly find themselves supporting not one, but dozens of questionably optimised Lustre installs.

A parallel file system appliance spun up by the cloud provider is the obvious solution here – just like database services and Hadoop clusters, the back-end of a performant file system should not need to be re-invented by every customer.

Software

All major cloud providers have taken roughly the same approach to research computing, best summarised as “build it, and they will come”. Sadly for them, it hasn’t quite worked out that way. Much of the ecosystem associated with each public cloud is predicated on the fact that third-party software vendors can come along and offer a tool which manages, or sits on top of, the IaaS layer. These third parties then charge a small per-hour fee for use of the tool, which is billed alongside the regular cloud service charges. Alternatively, a monthly fee for support can be used where a per-instance charge does not scale appropriately.

These models both work pretty well for enterprise, but do not mesh well with scientific computing, which is typically funded by unpredictable capital investments – a researcher with a fixed pot of money needs to be really confident that your software is worth the cost if they are going to adding a further percentage on top of every core-hour charge they pay. More often, they will choose to cobble something together themselves. This duplication of effort is a false economy as far as the whole research community is concerned, but for individuals it can often appear to be the most efficient way forward.

Cloud providers could address the low-hanging fruit here by putting together their own performance-optimised instance images for HPC, based on (for example) a simple CentOS base and with their own tested performance tweaks pre-enabled, hyperthreading disabled, and perhaps some sensible default software stack such as OpenHPC. Doing this themselves, rather than relying on a company to find some way to monetise it, would give the user community confidence that their interests are actually being taken into consideration.

Funding, billing and cost management

Cloud prices are targeted at enterprise customers, where hardware utilisation below 20% is common. Active HPC sites tend to be in the 70-90% utilisation range, making on-demand cloud server pricing decidedly unattractive. In order to be cost-competitive with on-premise solutions, cloud HPC requires the use of pre-emptible instances and spot-pricing.

The upshot of this price sensitivity is that cloud vendors could be forgiven for finding the HPC community to be a bit of a nuisance; we demand expensive hardware in the form of low-latency interconnects and fancy accelerators… but aren’t willing to pay much of a premium for them. HPC is therefore unlikely to drive much innovation in cloud solutions – that is, until a big customer (think oil & gas, weather, or perhaps pharmaceuticals) negotiate a special deal and decide to take the leap. Dipping in a toe will not be enough (many companies are there already) – the move will have to include 100% of the application stack if the cloud providers hope to silence the naysayers. Once that happens, the lessons learned from the migration can filter out to the rest of the industry.

The challenges of funding an open-ended operational service out of largely capital-backed budgets are a barrier to wholesale adoption of the cloud by universities, though this is one which central government really ought to be the ones to address. Cloud vendors can certainly help matters – the subscription model taken by Azure is a good start, but needs to be rolled out to the other providers and explained much better to potential users.

Finally there is, perhaps, scope for these multi-billion dollar companies to accept some of the cost risk by allowing for hard caps on charges or refunds on a portion of pre-empted jobs, mirroring the way that hardware resellers are expected to cope with liquidated damage contract terms. Call it a charitable donation to science and they might even be able to write it off…

What’s next?

Cloud providers have a few ways to get out of the doldrums they currently find themselves in with regards to the HPC market.

Firstly, they should sanitise their sign-up process; AWS has this covered for the most part, but the Windows-feel of Azure is surely off-putting to hardcore technical users. GCP offers probably the most comfortable experience for this crowd, but desperately needs to do something about the fact that individuals trying to sign up for a personal account in the EU are warned that for tax reasons, the Google cloud is for business use only; I hate to think how many potential customers have been dissuaded from trying out the platform based on this alone.

Secondly, they need to find a way to be more open-handed with trial opportunities suitable for research computing. The standard free trials available for AWS, Azure and GCP are generous if you are an individual hosting a trove of cat pictures, but not so much when you are dealing with terabytes of data and hundreds of core-hours of usage. These trials are already done on the corporate level for target customers, but need to be expanded substantially.

As discussed earlier, the HPC software ecosystem in the cloud is somewhat more stunted than the providers might have hoped – an easy way around this is to provide a stepping-stone between generic enterprise resources and solutions with third-party support. An open framework of tools would allow the ecosystem to develop more readily, and with less risk to third-party vendors.

Training is an area where all three of the cloud providers discussed here put in a considerable effort already. This should be enough to get HPC system administration staff up to speed, but there is still the matter of the end-users – local training by the admin teams of an organisation will clearly play some part, but the cloud vendors would do well to offer more tailored, lightweight courses for those who need to be able to understand, but not necessarily manage, their infrastructure.

Finally, there is the matter of vendor lock-in – one of the major factors which dissuades larger organisations from committing to a particular supplier. Any time you see a large organisation throw their lot in with one of the big three, you can be sure that there have been some lengthy discussions on discounts. Not every customer can expect this treatment, but if vendors wish to inspire any sort of confidence in their customers, they need to make a convincing case that you will be staying long term because you want to, and not because you have to. Competitive costs and rapid innovation have been the story of the cloud so far, but the trend must continue apace if Google, Microsoft or Amazon wish to become leading brands in HPC.

About the Author

Chris Downing joined Red Oak Consulting @redoakHPC in 2014 on completion of his PhD thesis in computational chemistry at University College London. Having performed academic research using the last two UK national supercomputing services (HECToR and ARCHER) as well as a number of smaller HPC resources, Chris is familiar with the complexities of matching both hardware and software to user requirements. His detailed knowledge of materials chemistry and solid-state physics means that he is well-placed to offer insight into emerging technologies. Chris, Senior Consultant, has a highly technical skill set working mainly in the innovation and research team providing a broad range of technical consultancy services. To find out more www.redoakconsulting.co.uk.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire