How the Cloud Is Falling Short for HPC

By Chris Downing

March 15, 2018

Editor’s note: The case for HPC in the cloud is growing stronger, but still has a way to go, especially for the more traditional HPC segments in the public sector. In this perspective piece, Red Oak’s Chris Downing walks us through what public cloud vendors are doing well and where there is room for improvement.

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The most often touted reason for this is cost – but such a simple description hides a series of more interesting causes for the lukewarm relationship the HPC community has with public cloud providers. Here, we explore how things stand in 2018 – and more importantly, what the cloud vendors need to do if they want to make their services competitive with on-premise HPC.

Performance

Despite the huge volume of SaaS and PaaS solutions available within the cloud, the nature of HPC is such that vanilla IaaS servers and associated networking are likely to form the bulk of research computing cloud usage for the foreseeable future. The overheads of virtualisation have previously been cited as a good reason not to move into the cloud, but this argument holds water less and less as time goes on; both because researchers are generally willing to pay an (admittedly smaller) overhead to make use of containerisation, and because the actual overhead is decreasing as cloud vendors shift to custom, external silicon for managing their infrastructure. To address cases where the small remaining overhead is still too much, bare-metal infrastructure is starting to show up in the price lists of major clouds.

Networking

Without low-latency interconnects, cloud usage will be effectively impossible for massive MPI jobs typical of the most ambitious “grand challenge” research. Azure tries to fill the niche for providing this sort of hardware in the public cloud – at present they miss the mark due to high costs, though that is a problem which can be remedied easily given enough internal political will.

It is not a given that cloud providers must offer low-latency interconnects more widely, but if they make the business decision not to do so, they must recognise that there will always be a segment of the market which is closed to them. Rather than trying to bluff their way into the high-end HPC market, cloud vendors who choose to eschew the low-latency segment should focus on their genuine strength; the near-infinite scale they can offer for high-throughput workloads and cloudbursting of single-node applications.

Data movement

Before we even reach the complexities of managing data once it is in the cloud, there are issues to be faced with getting it there, and eventually getting it back.

All three major cloud providers have set up very similar schemes for academic research customers which include discounted or free data egress; effectively, the costs for moving data out of the cloud are waived as long as they represent no more than 15% of the total bill for the institution. At the moment then, there is no obvious reason to favour one provider over the others on this front.

For industry users, data being held hostage as it grows in volume is less of a concern – the chain of ownership is much more straightforward, and as long as the company retains an account with the cloud provider, someone will be able to access the files (whether they are in a position to make decisions about data migration is another question…). Data produced by university researchers is more tricky in this regard – funding council rules are deliberately non-specific about what is actually required from researchers when they make a data management plan. The general consensus is that published data needs some level of discoverability and cataloguing; implementing a research data service in the cloud is likely to be far easier in the long-term than providing an on-premise solution, but requires a level of commitment to operational spending that many institutions would not be comfortable with. Cloud providers could certainly afford to make this easier.

Storage

The storage landscape within the cloud presents another complication, one which many HPC users will be far less prepared for than simply tuning their core-count and wall-clock times. Migrating data directly in and out of instance-attached block storage volumes via SSH might be the way to go for short, simple tasks – but any practical workflow with data persisting across jobs is going to need to make use of object storage.

While the mechanisms to interact with object storage are fairly simple for all three cloud providers, the breadth of options available when considering what to do next (stick with standard storage, have a tiered model with migration policies, external visibility, etc) could lead to a lot of analysis paralysis. For researchers who just want to run some jobs, storage is the first element of the cloud they will touch which is likely to provoke a strong desire to give in and go back to waiting for time on the local cluster.

For more demanding users, the problems only get worse – none of the built-in storage solutions available across the public cloud providers is going to be suitable for applications with high bandwidth requirements. Parallel file systems built on top of block storage are the obvious fix, but can quickly become expensive even without the licensing costs for a commercially supported solution. Managing high-performance storage on an individual level is going to require more heavyweight automation approaches than many HPC researchers will be used to deploying, and so local administrators could suddenly find themselves supporting not one, but dozens of questionably optimised Lustre installs.

A parallel file system appliance spun up by the cloud provider is the obvious solution here – just like database services and Hadoop clusters, the back-end of a performant file system should not need to be re-invented by every customer.

Software

All major cloud providers have taken roughly the same approach to research computing, best summarised as “build it, and they will come”. Sadly for them, it hasn’t quite worked out that way. Much of the ecosystem associated with each public cloud is predicated on the fact that third-party software vendors can come along and offer a tool which manages, or sits on top of, the IaaS layer. These third parties then charge a small per-hour fee for use of the tool, which is billed alongside the regular cloud service charges. Alternatively, a monthly fee for support can be used where a per-instance charge does not scale appropriately.

These models both work pretty well for enterprise, but do not mesh well with scientific computing, which is typically funded by unpredictable capital investments – a researcher with a fixed pot of money needs to be really confident that your software is worth the cost if they are going to adding a further percentage on top of every core-hour charge they pay. More often, they will choose to cobble something together themselves. This duplication of effort is a false economy as far as the whole research community is concerned, but for individuals it can often appear to be the most efficient way forward.

Cloud providers could address the low-hanging fruit here by putting together their own performance-optimised instance images for HPC, based on (for example) a simple CentOS base and with their own tested performance tweaks pre-enabled, hyperthreading disabled, and perhaps some sensible default software stack such as OpenHPC. Doing this themselves, rather than relying on a company to find some way to monetise it, would give the user community confidence that their interests are actually being taken into consideration.

Funding, billing and cost management

Cloud prices are targeted at enterprise customers, where hardware utilisation below 20% is common. Active HPC sites tend to be in the 70-90% utilisation range, making on-demand cloud server pricing decidedly unattractive. In order to be cost-competitive with on-premise solutions, cloud HPC requires the use of pre-emptible instances and spot-pricing.

The upshot of this price sensitivity is that cloud vendors could be forgiven for finding the HPC community to be a bit of a nuisance; we demand expensive hardware in the form of low-latency interconnects and fancy accelerators… but aren’t willing to pay much of a premium for them. HPC is therefore unlikely to drive much innovation in cloud solutions – that is, until a big customer (think oil & gas, weather, or perhaps pharmaceuticals) negotiate a special deal and decide to take the leap. Dipping in a toe will not be enough (many companies are there already) – the move will have to include 100% of the application stack if the cloud providers hope to silence the naysayers. Once that happens, the lessons learned from the migration can filter out to the rest of the industry.

The challenges of funding an open-ended operational service out of largely capital-backed budgets are a barrier to wholesale adoption of the cloud by universities, though this is one which central government really ought to be the ones to address. Cloud vendors can certainly help matters – the subscription model taken by Azure is a good start, but needs to be rolled out to the other providers and explained much better to potential users.

Finally there is, perhaps, scope for these multi-billion dollar companies to accept some of the cost risk by allowing for hard caps on charges or refunds on a portion of pre-empted jobs, mirroring the way that hardware resellers are expected to cope with liquidated damage contract terms. Call it a charitable donation to science and they might even be able to write it off…

What’s next?

Cloud providers have a few ways to get out of the doldrums they currently find themselves in with regards to the HPC market.

Firstly, they should sanitise their sign-up process; AWS has this covered for the most part, but the Windows-feel of Azure is surely off-putting to hardcore technical users. GCP offers probably the most comfortable experience for this crowd, but desperately needs to do something about the fact that individuals trying to sign up for a personal account in the EU are warned that for tax reasons, the Google cloud is for business use only; I hate to think how many potential customers have been dissuaded from trying out the platform based on this alone.

Secondly, they need to find a way to be more open-handed with trial opportunities suitable for research computing. The standard free trials available for AWS, Azure and GCP are generous if you are an individual hosting a trove of cat pictures, but not so much when you are dealing with terabytes of data and hundreds of core-hours of usage. These trials are already done on the corporate level for target customers, but need to be expanded substantially.

As discussed earlier, the HPC software ecosystem in the cloud is somewhat more stunted than the providers might have hoped – an easy way around this is to provide a stepping-stone between generic enterprise resources and solutions with third-party support. An open framework of tools would allow the ecosystem to develop more readily, and with less risk to third-party vendors.

Training is an area where all three of the cloud providers discussed here put in a considerable effort already. This should be enough to get HPC system administration staff up to speed, but there is still the matter of the end-users – local training by the admin teams of an organisation will clearly play some part, but the cloud vendors would do well to offer more tailored, lightweight courses for those who need to be able to understand, but not necessarily manage, their infrastructure.

Finally, there is the matter of vendor lock-in – one of the major factors which dissuades larger organisations from committing to a particular supplier. Any time you see a large organisation throw their lot in with one of the big three, you can be sure that there have been some lengthy discussions on discounts. Not every customer can expect this treatment, but if vendors wish to inspire any sort of confidence in their customers, they need to make a convincing case that you will be staying long term because you want to, and not because you have to. Competitive costs and rapid innovation have been the story of the cloud so far, but the trend must continue apace if Google, Microsoft or Amazon wish to become leading brands in HPC.

About the Author

Chris Downing joined Red Oak Consulting @redoakHPC in 2014 on completion of his PhD thesis in computational chemistry at University College London. Having performed academic research using the last two UK national supercomputing services (HECToR and ARCHER) as well as a number of smaller HPC resources, Chris is familiar with the complexities of matching both hardware and software to user requirements. His detailed knowledge of materials chemistry and solid-state physics means that he is well-placed to offer insight into emerging technologies. Chris, Senior Consultant, has a highly technical skill set working mainly in the innovation and research team providing a broad range of technical consultancy services. To find out more www.redoakconsulting.co.uk.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire