Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

By Doug Black

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough*. Within 10 to 12 years, we’re told, special-purpose quantum systems (see related story: Hyperion on the Emergence of the Quantum Computing Ecosystem) will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power.

Here’s the quantum computing dichotomy: even as quantum evolves toward commercial availability, very few of us in the technology industry have the slightest idea what it is. But it turns out there’s a perfectly good reason for this. As you’ll see, quantum (referred to as the “science of the very small”) is based on a non-human, non-Newtonian stratum of earthly existence, which means it does things, and acts in accordance with certain laws, for which we humans have no frame of reference.

Realizing why quantum is so alien can be liberating. It frees us from the gnawing worry that we’re not smart enough to ever understand it. It also means we can stop trying to fake it when quantum comes up in conversation. Speaking as a confirmed “Newtonian caveman” (see below), this writer asserts that at least the thinnest, outermost layer of quantum may not be as incomprehensible as we suppose. It might be a good idea if all of us were to make a late New Year’s Resolution to take a fresh stab at grasping quantum’s basic principles.

To help in this process, below are remarks delivered this week at the Rice University Oil & Gas HPC Conference in Houston by Kevin Kissell, technical director in Google’s Office of the CTO. In an interview last year, Kissell told us that while he works with Google’s quantum computing R&D group, he is by background a systems architect; his role with the quantum group is to advise his colleagues on assembling the technology into usable form.

“I’m not really a quantum guy,” he told us at SC17, “though I do read quantum physics textbooks in my spare time.”

Oh, ok.

If you’ve never been to a Kevin Kissell presentation at an industry conference, make a point of it at your next opportunity. It’s appointment viewing. The profusion of technical and scientific knowledge that pours forth, colored by humor, energy and intelligence, is something to see. A tech enthusiast, Kissell gives you the sense that he can’t get his thoughts and words out fast enough. He put on such a performance at the Houston conference, taking on the Herculean task of explaining quantum computing to the rest of us. To Kissell’s great credit, he did it with the empathy of a natural teacher who understands where comprehension stops and mystification begins.

Below is an excerpt of his remarks:

Google has been working on quantum computing for a while, and it’s really hard to explain to people sometimes. And it’s my belief that this is because our brains are not wired for it. There’s an evolutionary advantage in having a brain that understands Newtonian mechanics. Which is to say that when I throw a rock, it’s going to follow a parabola. Now it took us 10,000-20,000 years to be able to define a parabola mathematically. But the intuition that it’s going to start dropping – and dropping at an accelerated rate, because that’s what gravity does – that’s pretty instinctive because that’s a survival thing. But with quantum mechanics, there’s no reason why our brain needs to wrap itself around quantum mechanics in the same way, and in part this is because it contradicts intuition.

One of the classic examples that I found quite helpful in understanding this stuff is the classic demo that you can do it with a laser; the classic model is having a controlled source of individual photons, you fire photons in a beam splitter, you have a couple of mirrors, you have another beam splitter and you have a couple of detectors.

Kevin Kissell this week at the Rice University Oil & Gas HPC Conference

Now my Newtonian caveman brain tells me what should be happening is that a statistically equal number of photons should be hitting on either detector. But that’s not what happens. Because photons ain’t Newtonian things, they’re quantum things. And if you accept this just on faith – because I couldn’t derive this personally – that a beam splitter can be modeled as that matrix (see image) and that the path on which the photon is traveling can be thought of as a vector of a couple of probabilities, then I multiply that probability vector by the beam splitter, that gives me a couple of other resulting matrices, and then I run those matrices into the second beam splitter. The result I get is that the probability of it going into the upper target is zero and the probability that it goes to the target on the right becomes one. That seems strange, and the math only works if it is mathematically, at least, possible that the photon is on both paths at the same time.

This hurts our brains, but this seems to be the way the universe works at a microscopic level.

And so taking this…, if I think of my element of data as a quantum bit – or a qubit – it’s not something that I can represent as an on/off thing. In fact the usual graphical representation is a point on a sphere. So you can represent that point on a sphere as an X-Y-Z coordinates, or I can represent it as a pair of angles relative to the baseis. Typically, it’s done with angles. It hurts my eyes to read it, but that’s the way it’s done.

What’s cute about this is that with a normal bit, it’s 0 or 1…. (But) the quantum bit actually just has that photon which is on both paths at the same time. So this qubit is in a certain sense both 0 and 1 at the same time. It’s got a couple of values that are superimposed on it.

That’s kind of cool, but what is cooler is that if I’ve got two qubits then the vector spaces just sort of blossom. If I have two bits, I can express a value and I have four options that I can express. But if I have two qubits I can express four values at the same time. And that’s the power of it. It’s just exponentially more expressive, if you can actually master it.

So if I have 50 qubits, that state space is actually up there with a very large (Department of Energy) machine. I don’t know if it’s up there with an exascale machine, but it’s getting way up there. If I have 300 qubits, in principle I can represent and manipulate more states than there are atoms in the universe.

And, very conveniently, if I have 333 qubits I can represent a Google for it. (audience laughs) I’m not saying that that’s our design goal, but I’ll be very surprised if we don’t do at least a few runs with a 333-qubit machine… (more laughs)…

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign European computing: its first European factory, housed in the C Read more…

Hyperion Study Tracks Rise and Impact of Linux Supercomputers

May 17, 2022

That supercomputers produce impactful, lasting value is a basic tenet among the HPC community. To make the point more formally, Hyperion Research has issued a new report, The Economic and Societal Benefits of Linux Super Read more…

ECP Director Doug Kothe Named ORNL Associate Laboratory Director

May 16, 2022

The Department of Energy's Oak Ridge National Laboratory (ORNL) has selected Doug Kothe to be the next Associate Laboratory Director for its Computing and Computational Sciences Directorate (CCSD), HPCwire has learned. K Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Person to Watch. In this exclusive Q&A, Culhane covers her Read more…

AWS Solution Channel

shutterstock 1103121086

Encoding workflow dependencies in AWS Batch

Most users of HPC or Batch systems need to analyze data with multiple operations to get meaningful results. That’s really driven by the nature of scientific research or engineering processes – it’s rare that a single task generates the insight you need. Read more…

Argonne Supercomputer Advances Energy Storage Research

May 13, 2022

The lack of large-scale energy storage bottlenecks many sources of renewable energy, such as sunlight-reliant solar power and unpredictable wind power. Researchers from Lawrence Livermore National Laboratory (LLNL) are w Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign Eur Read more…

Google Cloud’s New TPU v4 ML Hub Packs 9 Exaflops of AI

May 16, 2022

Almost exactly a year ago, Google launched its Tensor Processing Unit (TPU) v4 chips at Google I/O 2021, promising twice the performance compared to the TPU v3. At the time, Google CEO Sundar Pichai said that Google’s datacenters would “soon have dozens of TPU v4 Pods, many of which will be... Read more…

Q&A with Candace Culhane, SC22 General Chair and an HPCwire Person to Watch in 2022

May 14, 2022

HPCwire is pleased to present our interview with SC22 General Chair Candace Culhane, program/project director at Los Alamos National Lab and an HPCwire 2022 Per Read more…

Supercomputing an Image of Our Galaxy’s Supermassive Black Hole

May 13, 2022

A supermassive black hole called Sagittarius A* (yes, the asterisk is part of it!) sits at the center of the Milky Way. Now, for the first time, we can see it. Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Intel Extends IPU Roadmap Through 2026

May 10, 2022

Intel is extending its roadmap for infrastructure processors through 2026, the company said at its Vision conference being held in Grapevine, Texas. The company's IPUs (infrastructure processing units) are megachips that are designed to improve datacenter efficiency by offloading functions such as networking control, storage management and security that were traditionally... Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

Intel’s Habana Labs Unveils Gaudi2, Greco AI Processors

May 10, 2022

At the hybrid Intel Vision event today, Intel’s Habana Labs team launched two major new products: Gaudi2, the second generation of the Gaudi deep learning training processor; and Greco, the successor to the Goya deep learning inference processor. Intel says that the processors offer significant speedups relative to their predecessors and the... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire