Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

By Doug Black

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough*. Within 10 to 12 years, we’re told, special-purpose quantum systems (see related story: Hyperion on the Emergence of the Quantum Computing Ecosystem) will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power.

Here’s the quantum computing dichotomy: even as quantum evolves toward commercial availability, very few of us in the technology industry have the slightest idea what it is. But it turns out there’s a perfectly good reason for this. As you’ll see, quantum (referred to as the “science of the very small”) is based on a non-human, non-Newtonian stratum of earthly existence, which means it does things, and acts in accordance with certain laws, for which we humans have no frame of reference.

Realizing why quantum is so alien can be liberating. It frees us from the gnawing worry that we’re not smart enough to ever understand it. It also means we can stop trying to fake it when quantum comes up in conversation. Speaking as a confirmed “Newtonian caveman” (see below), this writer asserts that at least the thinnest, outermost layer of quantum may not be as incomprehensible as we suppose. It might be a good idea if all of us were to make a late New Year’s Resolution to take a fresh stab at grasping quantum’s basic principles.

To help in this process, below are remarks delivered this week at the Rice University Oil & Gas HPC Conference in Houston by Kevin Kissell, technical director in Google’s Office of the CTO. In an interview last year, Kissell told us that while he works with Google’s quantum computing R&D group, he is by background a systems architect; his role with the quantum group is to advise his colleagues on assembling the technology into usable form.

“I’m not really a quantum guy,” he told us at SC17, “though I do read quantum physics textbooks in my spare time.”

Oh, ok.

If you’ve never been to a Kevin Kissell presentation at an industry conference, make a point of it at your next opportunity. It’s appointment viewing. The profusion of technical and scientific knowledge that pours forth, colored by humor, energy and intelligence, is something to see. A tech enthusiast, Kissell gives you the sense that he can’t get his thoughts and words out fast enough. He put on such a performance at the Houston conference, taking on the Herculean task of explaining quantum computing to the rest of us. To Kissell’s great credit, he did it with the empathy of a natural teacher who understands where comprehension stops and mystification begins.

Below is an excerpt of his remarks:

Google has been working on quantum computing for a while, and it’s really hard to explain to people sometimes. And it’s my belief that this is because our brains are not wired for it. There’s an evolutionary advantage in having a brain that understands Newtonian mechanics. Which is to say that when I throw a rock, it’s going to follow a parabola. Now it took us 10,000-20,000 years to be able to define a parabola mathematically. But the intuition that it’s going to start dropping – and dropping at an accelerated rate, because that’s what gravity does – that’s pretty instinctive because that’s a survival thing. But with quantum mechanics, there’s no reason why our brain needs to wrap itself around quantum mechanics in the same way, and in part this is because it contradicts intuition.

One of the classic examples that I found quite helpful in understanding this stuff is the classic demo that you can do it with a laser; the classic model is having a controlled source of individual photons, you fire photons in a beam splitter, you have a couple of mirrors, you have another beam splitter and you have a couple of detectors.

Kevin Kissell this week at the Rice University Oil & Gas HPC Conference

Now my Newtonian caveman brain tells me what should be happening is that a statistically equal number of photons should be hitting on either detector. But that’s not what happens. Because photons ain’t Newtonian things, they’re quantum things. And if you accept this just on faith – because I couldn’t derive this personally – that a beam splitter can be modeled as that matrix (see image) and that the path on which the photon is traveling can be thought of as a vector of a couple of probabilities, then I multiply that probability vector by the beam splitter, that gives me a couple of other resulting matrices, and then I run those matrices into the second beam splitter. The result I get is that the probability of it going into the upper target is zero and the probability that it goes to the target on the right becomes one. That seems strange, and the math only works if it is mathematically, at least, possible that the photon is on both paths at the same time.

This hurts our brains, but this seems to be the way the universe works at a microscopic level.

And so taking this…, if I think of my element of data as a quantum bit – or a qubit – it’s not something that I can represent as an on/off thing. In fact the usual graphical representation is a point on a sphere. So you can represent that point on a sphere as an X-Y-Z coordinates, or I can represent it as a pair of angles relative to the baseis. Typically, it’s done with angles. It hurts my eyes to read it, but that’s the way it’s done.

What’s cute about this is that with a normal bit, it’s 0 or 1…. (But) the quantum bit actually just has that photon which is on both paths at the same time. So this qubit is in a certain sense both 0 and 1 at the same time. It’s got a couple of values that are superimposed on it.

That’s kind of cool, but what is cooler is that if I’ve got two qubits then the vector spaces just sort of blossom. If I have two bits, I can express a value and I have four options that I can express. But if I have two qubits I can express four values at the same time. And that’s the power of it. It’s just exponentially more expressive, if you can actually master it.

So if I have 50 qubits, that state space is actually up there with a very large (Department of Energy) machine. I don’t know if it’s up there with an exascale machine, but it’s getting way up there. If I have 300 qubits, in principle I can represent and manipulate more states than there are atoms in the universe.

And, very conveniently, if I have 333 qubits I can represent a Google for it. (audience laughs) I’m not saying that that’s our design goal, but I’ll be very surprised if we don’t do at least a few runs with a 333-qubit machine… (more laughs)…

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This