ALCF and U Chicago Researchers Advance ‘Lithium Air’ Battery Technology

By Staff

March 27, 2018

The lithium ion battery, which essentially transformed portable electronics, has been a tough act to follow. Last week, researchers from Argonne National Laboratory and the University of Chicago reported in Nature advances suggesting so-called ‘lithium air’ battery technology may be finally easing into position as lithium ion’s successor.

Past lithium air battery efforts have been hobbled by short life cycles and the need to use pure oxygen (hence, referred to as lithium-oxygen batteries); consequently a tank of oxygen gas would have to be part of the battery system, making it prohibitive for use in electric vehicles due to space requirements. A lithium-air battery that uses air from outside eliminates this problem (see paper’s abstract lower in text).

As reported in Nature – “Lithium-Oxygen Batteries with Long Cycle Life in a Realistic Air Atmosphere” – scientists from the University of Illinois at Chicago and the U.S. Department of Energy’s (DOE) Argonne National Laboratory has produced a new design for a beyond-lithium-ion battery cell that operates by running on air (hence, referred to as “lithium-air”) over many charge and discharge cycles.

Key features of the work include a new protective coating for the lithium metal anode, which prevents the anode from reacting with oxygen and hence deteriorating, and a novel electrolyte mixture that allows the cell to operate in an air atmosphere. In tests under an air environment, this cell maintained high performance during 700 cycles, far surpassing previous technology.

“The energy storage capacity was about three times that of a lithium-ion battery, and five times should be easily possible with continued research. This first demonstration of a true lithium-air battery is an important step toward what we call beyond-lithium-ion batteries,” said Amin Salehi-Khojin, co-principal investigator from the UL Chicago, in an account of the work on the ANL web site.

Argonne team members (from left to right): Rajeev Assary, Cong Liu, Badri Narayanan, Anh Ngo and Larry Curtiss. (Image by Argonne National Laboratory.

Researchers at the University of Illinois at Chicago built, tested, analyzed and characterized the battery cells, while those at Argonne mainly handled the basic science computational studies to determine how this system operates in air and what factors contribute to the improved cycling stability. The work consisted of tens of ab initio molecular dynamics simulations on systems of size ~500 atoms – such calculations are computationally intensive and entail use of leadership class computing facilities. They used the Center for Nanoscale Materials’ (CNM) high performance computing cluster for initial runs on smaller sizes (~200 atoms); for these they employed ~128 cores for a week according to Badri Narayanan, an assistant materials scientist in Argonne’s Materials Science division and an author on the paper.

Longer production runs on large systems (500 atoms) were performed on Argonne Leadership Computing Facility’s Vesta system. On ALCF, they used 512 compute cores for a period of 3 weeks for each of those runs. All calculations were carried out using the highly parallel density functional theory code (VASP). This new knowledge should prove crucial in scientists’ continued efforts to develop a full-size lithium-air battery.

Here’s a portion of the paper’s abstract:

“So far, however, such systems have been largely restricted to pure oxygen environments (lithium–oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium–oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium–air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles.

“We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium–oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.”

Link to full account on the ANL web site: https://www.anl.gov/articles/out-thin-air
Link to paper: https://www.nature.com/articles/nature25984

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This