Deep Neural Network from University of Illinois Accelerates aLIGO Research

By John Russell

March 27, 2018

Gravitational wave astronomy burst onto the scene with the success of the original LIGO (Laser Interferometer Gravitational-Wave Observatory) effort and has since continued with the expanded Advanced LIGO (aLIGO) Project which has now identified five binary black hole mergers producing gravitational waves (GW). New deep learning tools developed at the University of Illinois Urbana-Champaign and National Center for Supercomputing Applications (NCSA) now promise to accelerate aLIGO discovery efforts.

Writing in Physical Review last month (Deep neural networks to enable real-time multimessenger astrophysics) researchers from UL and NCSA introduce Deep Filtering, new scalable machine learning method for end-to-end time-series signal processing. Authors Daniel George and E. A. Huerta of UL and NCSA say Deep Filtering outperforms conventional machine learning techniques, achieves similar performance compared to matched filtering, while being several orders of magnitude faster, allowing real-time signal processing with minimal resources.

“An important advantage of Deep Filtering is its scalability, i.e., all the intensive computation is diverted to the one-time training stage, after which the data sets can be discarded, i.e., the size of the template banks presents no limitation when using deep learning. With existing computational resources on supercomputers, such as Blue Waters, it will be feasible to train DNNs that target a nine-dimensional parameter space within a few weeks. Furthermore, once trained these DNNs can be evaluated in real time with a single CPU, and more intensive searches over longer time periods covering a broader range of signals can be carried out with a dedicated GPU,” write the authors Daniel George and E. A. Huerta of UL and NCSA.

Given the expected growing gush of data from aLIGO the new approach is expected to pave the way for more use of deep neural networks in multimessenger physics. “Accelerating the offline Bayesian parameter estimation algorithms, which typically last from several hours to a few days, is no trivial task since they have to sample a 15-dimensional parameter space,” note the authors.

Although George and Huerta’s paper focuses on Deep Filtering’s application in aLIGO datasets, it also contains an excellent and accessible summary of machine learning and deep learning techniques and contrasting characteristics.

Deep Filtering is based on deep learning with two deep convolutional neural networks, which are designed for classification and regression, to detect gravitational wave signals in highly noisy time-series data streams and also estimate the parameters of their sources in real time. “The results indicate that Deep Filtering outperforms conventional machine learning techniques, achieves similar performance compared to matched filtering, while being several orders of magnitude faster, allowing real-time signal processing with minimal resources,” write the researchers.

In tackling the problem, the researchers divided it into two separate parts – first a classifier network to provide a confidence level for the signal detection, and a second network, referred to as the “predictor,” to estimate the parameters of the source of the signal, in this case, the component masses of the BBH. The predictor is triggered when the classifier identifies a signal with a high probability.

The researchers used both fairly simple and more complicated versions of the classifier and predictor networks and interestingly the simpler versions performed nearly as well:

“The simple classifier and predictor are only 2 MB in size each, yet they achieve excellent results. The average time taken for evaluating them per input of 1 second duration is approximately 6.7 milliseconds, and 106 microseconds using a single CPU and GPU respectively. The deeper predictor CNN, which is about 23 MB, achieves slightly better accuracy at parameter estimation but takes about 85 milliseconds for evaluation on the CPU and 535 microseconds on the GPU, which is still orders of magnitude faster than real time. Note that the current deep learning frameworks are not well optimized for CPU evaluation.

“For comparison, we estimated an evaluation time of 1.1 seconds for time-domain matched filtering on the same CPU (using two cores) with the same template bank of clean signals used for training; the results are shown in Fig. 16. This fast inference rate indicates that real-time analysis can be carried out with a single CPU or GPU, even with DNNs that are significantly larger and trained with template banks of millions of signals.6Note that CNNs can be trained on millions of inputs in a few hours using distributed training on parallel GPUs. Furthermore, the input layer of the CNNs can be modified to consider inputs/templates of any duration, which will result in the computational cost scaling linearly with the input size. Therefore, even with inputs that are 1000s long, the analysis can still be carried out in real time.”

They also assessed performance on various GPU and CPU and noted that most of the intensive training was done on NVIDIA Tesla P100 GPUs with version 11 of the Wolfram Language; however, a few test sessions were performed with NVIDIA Tesla K40, GTX 1080, and GT 940M GPUs.

The researchers conclude that DNNs for multimessenger astrophysics offers opportunities “to harness AI computing with rapidly emerging hardware architectures and software optimized for deep learning. In addition, the use of state-of-the-art HPC facilities will continue to be used to numerically model GW sources, getting insights into the physical processes that lead to EM signatures, while also providing the means to continue using distributed computing to train DNNs.”

Link to paper: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.044039

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire