Nvidia Riding High as GPU Workloads and Capabilities Soar

By Alex Woodie

March 27, 2018

Don’t look now, but GPUs are gobbling up big workloads as massive data-crunching AI use cases proliferate around the world. That news couldn’t be sweeter for Nvidia, which is hosting its ninth annual GPU Technology Conference (GTC) this week in San Jose, California.

GPUs have come a long way from the early 1990s, when Jensen Huang, Chris Malachowsky, and Curtis Priem founded Nvidia. At the time, rendering lifelike graphics was one of the toughest computational challenges, so the trio decided to tackle the development of a massively multicore processor that could offload the graphics work from the main CPU.

The company’s GPUs became hot commodities among a certain demographic, i.e. young male video game enthusiasts. But making first-person shooters pop doesn’t explain how Nvidia’s stock has risen 1,900 percent over the past five years and made the Santa Clara company a $150 billion giant.

Rise of GPUs

Jensen Huang at SC17

We’ve known for some time that GPUs are good at other things besides driving high quality graphics for video games. In the mid 2000s, the high performance computing (HPC) crowd discovered how much faster GPUs are at math than CPUs, and so they started building them into supercomputers as accelerators.

More recently, Web giants like Google have discovered that GPUs are good at something else: deep learning.

By training neural networks upon massive amounts of data, hyperscalers discovered they could get an iterative improvement on machine learning tasks like image recognition and natural language processing (NLP). GPUs aren’t required for training neural networks, but they sure can make them run faster.

Nvidia isn’t the only player in the emerging deep learning world, but it’s one of the central figures that has made the deep learning revolution possible. What’s more, its GTC conferences are showcases for what’s becoming possible with the combination of GPUs and AI.

The rise of deep learning has given artificial intelligence (AI) a shot in the arm and opened the door to using computers to solve problems that previously were deemed unsolvable. Without GPU-powered deep learning, we would not have had a mad rush to develop the first truly autonomous car. The number of other use cases for deep learning — in radiology, pharmacology, bioinformatics, security, and more — continues to grow on a weekly basis.

Not every session at GTC this week is about AI, but it’s safe to say that a majority of them are. “This has become one of the premier conferences in the world around AI,” Greg Estes, vice president of developer programs at Nvidia, said in a press briefing yesterday.

More than 8,000 people have registered for the four-and-a-half day GTC conference, which is taking place in the San Jose McEnery Convention Center, a few miles from Nvidia’s headquarters. According to Estes, the number could exceed 9,000, which would blow away last year’s attendance figure of 6,500 attendees.

‘Meteoric Rise’

Ian Buck, vice president and general manager of accelerated computing at Nvidia, shared some impressive figures about the rise of GPUs around the world.

When Nvidia launched its first datacenter product in 2006, a single Nvidia GPU boasted a 4x performance advantage over a comparable CPU. With the “Volta” V100s installed in supercomputers today, the advantage has widened considerably.

Nvidia’s stock price has risen 1,900% over the past five years

“We are now 20x faster than a comparable CPU node. That’s 1.7x faster year-over-year performance, clearly outstripping Moore’s law,” he said.

What’s more, GPUs will power 50 percent of the floating point computational horsepower for the top 50 supercomputers in the world. “That’s a 15x increase in five years from where we were,” he continued. “We’re obviously experiencing a meteoric rise in GPU computing and acceleration.”

That type of growth would not be possible if Nvidia didn’t gamble by making big changes in how it developed hardware and how it developed software to exploit that hardware, Buck said.

“It really speaks to how we are innovating and how we think about our products and how we think about … the market,” Buck said. “We change our architectures. We change our instruction sets. We’re not afraid to do so because we’re actually developing a new kind of…accelerated computing model, that’s breaking the old rules and running this … faster than Moore’s law.”

Deep learning is delivering huge gains in that field. According to Buck, deep learning has delivered a 190x performance boost for image recognition compared to traditional machine learning methods. A neural language translator saw a 50x boost. Speech recognition is up 60x, while voice synthesis — or voice generation — has improved 36x.While the HPC market may have given Nvidia enterprise credibility, it’s the rise of AI and deep learning that seems to have investors excited. The company is working closely with nearly every major tech company — from IBM and SAP to Facebook and Google — to exploit the architectural advantages that its GPU architecture provides for powering neural networks.

The first generation of deep learning systems revolved around two main problems: image recognition and NLP. We’re now seeing deep learning being applied to a broader range of challenges, and Nvidia is at the forefront in making it happen with its GPUs and software frameworks.

“As these neural networks are getting smarter, they’re doing more things. They’re applying new use cases, they’re getting larger,” Buck said. “Naturally they have to do more and get more accurate. They’re growing.”

Nvidia CEO Huang takes the stage this morning to deliver his highly anticipated keynote address. In the past, this is how Nvidia made major announcements, like unveiling new GPUs. But far from just selling super-fast GPUs, the company is positioning itself to be a full-stack platform provider, and the shepherd of an ecosystem that’s emerging around AI and deep learning. With hundreds of partners, Nvidia is posed to be a key player as AI use cases expand, and GTC is its showcase for that work.

It’s all about creating “a different kind of computing,” Buck said. “We don’t try to build a processor that tries to run a fixed instruction set.  We’re building an entire platform and innovating in all layers of that stack.”

A version of this article originally appeared on our sister site, Datanami.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This