Nvidia Riding High as GPU Workloads and Capabilities Soar

By Alex Woodie

March 27, 2018

Don’t look now, but GPUs are gobbling up big workloads as massive data-crunching AI use cases proliferate around the world. That news couldn’t be sweeter for Nvidia, which is hosting its ninth annual GPU Technology Conference (GTC) this week in San Jose, California.

GPUs have come a long way from the early 1990s, when Jensen Huang, Chris Malachowsky, and Curtis Priem founded Nvidia. At the time, rendering lifelike graphics was one of the toughest computational challenges, so the trio decided to tackle the development of a massively multicore processor that could offload the graphics work from the main CPU.

The company’s GPUs became hot commodities among a certain demographic, i.e. young male video game enthusiasts. But making first-person shooters pop doesn’t explain how Nvidia’s stock has risen 1,900 percent over the past five years and made the Santa Clara company a $150 billion giant.

Rise of GPUs

Jensen Huang at SC17

We’ve known for some time that GPUs are good at other things besides driving high quality graphics for video games. In the mid 2000s, the high performance computing (HPC) crowd discovered how much faster GPUs are at math than CPUs, and so they started building them into supercomputers as accelerators.

More recently, Web giants like Google have discovered that GPUs are good at something else: deep learning.

By training neural networks upon massive amounts of data, hyperscalers discovered they could get an iterative improvement on machine learning tasks like image recognition and natural language processing (NLP). GPUs aren’t required for training neural networks, but they sure can make them run faster.

Nvidia isn’t the only player in the emerging deep learning world, but it’s one of the central figures that has made the deep learning revolution possible. What’s more, its GTC conferences are showcases for what’s becoming possible with the combination of GPUs and AI.

The rise of deep learning has given artificial intelligence (AI) a shot in the arm and opened the door to using computers to solve problems that previously were deemed unsolvable. Without GPU-powered deep learning, we would not have had a mad rush to develop the first truly autonomous car. The number of other use cases for deep learning — in radiology, pharmacology, bioinformatics, security, and more — continues to grow on a weekly basis.

Not every session at GTC this week is about AI, but it’s safe to say that a majority of them are. “This has become one of the premier conferences in the world around AI,” Greg Estes, vice president of developer programs at Nvidia, said in a press briefing yesterday.

More than 8,000 people have registered for the four-and-a-half day GTC conference, which is taking place in the San Jose McEnery Convention Center, a few miles from Nvidia’s headquarters. According to Estes, the number could exceed 9,000, which would blow away last year’s attendance figure of 6,500 attendees.

‘Meteoric Rise’

Ian Buck, vice president and general manager of accelerated computing at Nvidia, shared some impressive figures about the rise of GPUs around the world.

When Nvidia launched its first datacenter product in 2006, a single Nvidia GPU boasted a 4x performance advantage over a comparable CPU. With the “Volta” V100s installed in supercomputers today, the advantage has widened considerably.

Nvidia’s stock price has risen 1,900% over the past five years

“We are now 20x faster than a comparable CPU node. That’s 1.7x faster year-over-year performance, clearly outstripping Moore’s law,” he said.

What’s more, GPUs will power 50 percent of the floating point computational horsepower for the top 50 supercomputers in the world. “That’s a 15x increase in five years from where we were,” he continued. “We’re obviously experiencing a meteoric rise in GPU computing and acceleration.”

That type of growth would not be possible if Nvidia didn’t gamble by making big changes in how it developed hardware and how it developed software to exploit that hardware, Buck said.

“It really speaks to how we are innovating and how we think about our products and how we think about … the market,” Buck said. “We change our architectures. We change our instruction sets. We’re not afraid to do so because we’re actually developing a new kind of…accelerated computing model, that’s breaking the old rules and running this … faster than Moore’s law.”

Deep learning is delivering huge gains in that field. According to Buck, deep learning has delivered a 190x performance boost for image recognition compared to traditional machine learning methods. A neural language translator saw a 50x boost. Speech recognition is up 60x, while voice synthesis — or voice generation — has improved 36x.While the HPC market may have given Nvidia enterprise credibility, it’s the rise of AI and deep learning that seems to have investors excited. The company is working closely with nearly every major tech company — from IBM and SAP to Facebook and Google — to exploit the architectural advantages that its GPU architecture provides for powering neural networks.

The first generation of deep learning systems revolved around two main problems: image recognition and NLP. We’re now seeing deep learning being applied to a broader range of challenges, and Nvidia is at the forefront in making it happen with its GPUs and software frameworks.

“As these neural networks are getting smarter, they’re doing more things. They’re applying new use cases, they’re getting larger,” Buck said. “Naturally they have to do more and get more accurate. They’re growing.”

Nvidia CEO Huang takes the stage this morning to deliver his highly anticipated keynote address. In the past, this is how Nvidia made major announcements, like unveiling new GPUs. But far from just selling super-fast GPUs, the company is positioning itself to be a full-stack platform provider, and the shepherd of an ecosystem that’s emerging around AI and deep learning. With hundreds of partners, Nvidia is posed to be a key player as AI use cases expand, and GTC is its showcase for that work.

It’s all about creating “a different kind of computing,” Buck said. “We don’t try to build a processor that tries to run a fixed instruction set.  We’re building an entire platform and innovating in all layers of that stack.”

A version of this article originally appeared on our sister site, Datanami.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This