FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

By Alex R. Larzelere

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positive news for the DOE and NNSA’s exascale activities. When we last looked at the budget situation, Congress and the Administration had stacked the deck to make passing the 12 appropriations bills as easy as possible. The last Continuing Resolution (CR) lifted the budget sequestration caps and allowed the Senate and House Appropriations committees to basically ignore the country’s debt limit. However, even with this added flexibility, Congress was unable to complete the process to reconcile the differences in the appropriations bills passed by the House and the Senate. That resulted in the creation of an omnibus bill that covered the discretionary elements of the entire federal government.

The FY18 omnibus budget is huge. The bill was 2,232 pages long and covered over $1.3 trillion of government spending. It basically contains the text of the 12 appropriations bill that would have been the subject to the House and Senate conference committees if “regular order” had been followed. The “must pass” nature of an omnibus provides Congress with an opportunity to slip in non-budget related language into what eventually becomes law. It was some of those provisions that almost caused the demise of the omnibus and generated a lot of excitement before the bill was signed by the President into law.

The text of the omnibus bill was unveiled on the evening of Wednesday, March 21st. The bill was then passed by both the House and Senate on Thursday. The next and final step was the President signing the bill into law. Historically, given the alternative of shutting down the government, the Presidential signing would be considered automatic. However, in a Tweet on the morning of Friday, March 23rd, President Trump expressed his dissatisfaction with the bill and the process that generated it. He threatened to veto the bill, which in turn generated a great deal of uncertainty with what would happen next. This was particularly troublesome because Congress was in the process of heading out of town for its two-week spring recess. However, in the end, and to the relief of many, the President did sign the omnibus bill and the $1.3 trillion budget became law.

The very good news is that in the omnibus, the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) saw significant budget growth. As you will recall, ECI is the joint effort by the DOE’s Office of Science (SC) and the National Nuclear Security Administration (NNSA). The goal of ECI is to establish a “productive” exascale system in the United States by 2021, with several follow-on installations. ECI consists of two major parts. One is the activities associated with the procurement of systems to support the computing capabilities at the national laboratories facilities. This work is being done through the CORAL-2 acquisition process and will include Non-Recurring Engineering work, site preparation, and installation of exascale computing system. CORAL stands for Collaboration of Oak Ridge, Argonne, and Livermore. The “2” represents that this is the second time this process is being used. The first time, the CORAL Request for Proposals (RFP) was used to acquire the Aurora system at Argonne National Laboratory (ANL), the Summit system at Oak Ridge National Laboratory (ORNL) and the Sierra system at Lawrence Livermore National Laboratory. The CORAL-2 procurement process is just starting and the RFP is expected to be released any day now.

The other part of ECI is known as the Exascale Computing Project (ECP). This is an official Office of Science (SC) project (governed by DOE orders) that is jointly supported by SC / ASCR and the NNSA Advanced Simulation and Computing (ASC) program. ECP is closely coordinated with complementary exascale work funded by NNSA at its national labs. The focus of ECP and the NNSA work is on conducting research that will improve the productivity of systems that will be procured through CORAL-2. ECP also supports research in hardware technologies and middleware software (operating systems, file systems, libraries, etc.) to improve exascale system productivity. A major emphasis of ECP is creating the applications that can use the power of exascale computing to solve important science and national security challenges. Finally, ECP supports co-design centers that bring all the elements of ECP together.

The final number for ECI saw the numbers grow from an initial request of $508 million to a final $663 million. Most of this growth occurred in the Office of Science budget. The initial request for NNSA ECI was $183 million and only grew to $186 million in the FY18 omnibus. On the SC side of the ledger, the initial request was for $347 million; the final omnibus number is $477 million, a big $130 million increase. Most of that occurred within the facilities elements of the budget that is used for hardware procurement and site preparation.

An important aspect of the FY18 omnibus numbers is that they will feed into the exascale program budget for FY19. In an earlier article, we outlined the ECI budget request made by the President for FY19. These numbers were also very encouraging. The President’s FY19 ECI budget request was for a total of $636 million in the Department of Energy (DOE). This is below the FY18 omnibus number, but that will likely be adjusted as the request works its way through the Congressional process. The NNSA FY19 request for ECI is $163 million, which is the same as the FY18 omnibus number. The SC ECI FY19 request is for $473 million and that is below the final FY18 omnibus number, but again can be adjusted by Congress.

With these budget numbers, it is now up to the DOE SC and NNSA programs to continue to execute the work needed to deliver “capable” exascale computers starting 2021. A big part of that will be the CORAL-2 procurements that should be released shortly. Just as for the previous CORAL-1 procurement, to mitigate technology risks, CORAL-2 expects to procure machines with two different architectures. One is slated to go to the Oak Ridge Leadership Computing Facility (OLCF) for 2021 delivery and the other, depending on the availability of funds, to the Argonne Leadership Computing Facility (ALCF) for delivery in 2022. The ALCF exascale system would be in addition to the “novel” architecture system currently being built by Intel and known as A21 (formerly Aurora). The NNSA exascale system is expected to start its installation in 2022 at LLNL. The NNSA is expected to choose one of the two different SC systems, but reserves the option of choosing a third architecture.

Also, the ECP will not have any funding excuses for delivering the technologies to make the future exascale computers “productive.” The ECP leadership transition from Paul Messina to Doug Kothe has been completed along with several leadership changes at the sub-project level. During the December advisory committee meeting, Kothe talked about installing project planning processes that provide a good view of tasks, milestones, interdependencies and risks. This is similar to the approach he used before with great success when he was the Director of the Consortium for Advanced Simulation of Light-water-reactors (CASL). CASL is a DOE Energy Innovation Hub, which in the words of former Secretary of Energy Steve Chu, was required to have a “fierce sense of urgency.” Given all the recent good news, ECI also seems to be getting that similar sense of urgency.

As messy as the end was, the FY18 budget process is now complete. The numbers for the U.S. exascale program look very good and the prospects for the next year are at least as good and could get better. The worldwide competition for exascale supremacy is still on. China, Japan, and Europe are all making announcements about their plans. The great news is that there are no questions that the U.S. is in the race. In the final analysis, there is no reason to doubt the country’s commitment to retaining and building its leadership in the important strategic technology of exascale computing.

About the Author

Alex Larzelere is a senior fellow at the U.S. Council on Competitiveness, the president of Larzelere & Associates Consulting and HPCwire’s policy editor. He is currently a technologist, speaker and author on a number of disruptive technologies that include: advanced modeling and simulation; high performance computing; artificial intelligence; the Internet of Things; and additive manufacturing. Alex’s career has included time in federal service (working closely with DOE national labs), private industry, and as founder of a small business. Throughout that time, he led programs that implemented the use of cutting edge advanced computing technologies to enable high resolution, multi-physics simulations of complex physical systems. Alex is the author of “Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI).”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&D on energy technologies s Read more…

By Tiffany Trader

Training Time Slashed for Deep Learning

August 14, 2018

Fast.ai, an organization offering free courses on deep learning, claimed a new speed record for training a popular image database using Nvidia GPUs running on public cloud infrastructure. A pair of researchers trained Read more…

By George Leopold

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the Read more…

By Rob Farber

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

Rigetti Eyes Scaling with 128-Qubit Architecture

August 10, 2018

Rigetti Computing plans to build a 128-qubit quantum computer based on an equivalent quantum processor that leverages emerging hybrid computing algorithms used to test programs and potential applications. Founded in 2 Read more…

By George Leopold

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Google is First Partner in NIH’s STRIDES Effort to Speed Discovery in the Cloud

July 31, 2018

The National Institutes of Health, with the help of Google, last week launched STRIDES - Science and Technology Research Infrastructure for Discovery, Experimen Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This