FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

By Alex R. Larzelere

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positive news for the DOE and NNSA’s exascale activities. When we last looked at the budget situation, Congress and the Administration had stacked the deck to make passing the 12 appropriations bills as easy as possible. The last Continuing Resolution (CR) lifted the budget sequestration caps and allowed the Senate and House Appropriations committees to basically ignore the country’s debt limit. However, even with this added flexibility, Congress was unable to complete the process to reconcile the differences in the appropriations bills passed by the House and the Senate. That resulted in the creation of an omnibus bill that covered the discretionary elements of the entire federal government.

The FY18 omnibus budget is huge. The bill was 2,232 pages long and covered over $1.3 trillion of government spending. It basically contains the text of the 12 appropriations bill that would have been the subject to the House and Senate conference committees if “regular order” had been followed. The “must pass” nature of an omnibus provides Congress with an opportunity to slip in non-budget related language into what eventually becomes law. It was some of those provisions that almost caused the demise of the omnibus and generated a lot of excitement before the bill was signed by the President into law.

The text of the omnibus bill was unveiled on the evening of Wednesday, March 21st. The bill was then passed by both the House and Senate on Thursday. The next and final step was the President signing the bill into law. Historically, given the alternative of shutting down the government, the Presidential signing would be considered automatic. However, in a Tweet on the morning of Friday, March 23rd, President Trump expressed his dissatisfaction with the bill and the process that generated it. He threatened to veto the bill, which in turn generated a great deal of uncertainty with what would happen next. This was particularly troublesome because Congress was in the process of heading out of town for its two-week spring recess. However, in the end, and to the relief of many, the President did sign the omnibus bill and the $1.3 trillion budget became law.

The very good news is that in the omnibus, the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) saw significant budget growth. As you will recall, ECI is the joint effort by the DOE’s Office of Science (SC) and the National Nuclear Security Administration (NNSA). The goal of ECI is to establish a “productive” exascale system in the United States by 2021, with several follow-on installations. ECI consists of two major parts. One is the activities associated with the procurement of systems to support the computing capabilities at the national laboratories facilities. This work is being done through the CORAL-2 acquisition process and will include Non-Recurring Engineering work, site preparation, and installation of exascale computing system. CORAL stands for Collaboration of Oak Ridge, Argonne, and Livermore. The “2” represents that this is the second time this process is being used. The first time, the CORAL Request for Proposals (RFP) was used to acquire the Aurora system at Argonne National Laboratory (ANL), the Summit system at Oak Ridge National Laboratory (ORNL) and the Sierra system at Lawrence Livermore National Laboratory. The CORAL-2 procurement process is just starting and the RFP is expected to be released any day now.

The other part of ECI is known as the Exascale Computing Project (ECP). This is an official Office of Science (SC) project (governed by DOE orders) that is jointly supported by SC / ASCR and the NNSA Advanced Simulation and Computing (ASC) program. ECP is closely coordinated with complementary exascale work funded by NNSA at its national labs. The focus of ECP and the NNSA work is on conducting research that will improve the productivity of systems that will be procured through CORAL-2. ECP also supports research in hardware technologies and middleware software (operating systems, file systems, libraries, etc.) to improve exascale system productivity. A major emphasis of ECP is creating the applications that can use the power of exascale computing to solve important science and national security challenges. Finally, ECP supports co-design centers that bring all the elements of ECP together.

The final number for ECI saw the numbers grow from an initial request of $508 million to a final $663 million. Most of this growth occurred in the Office of Science budget. The initial request for NNSA ECI was $183 million and only grew to $186 million in the FY18 omnibus. On the SC side of the ledger, the initial request was for $347 million; the final omnibus number is $477 million, a big $130 million increase. Most of that occurred within the facilities elements of the budget that is used for hardware procurement and site preparation.

An important aspect of the FY18 omnibus numbers is that they will feed into the exascale program budget for FY19. In an earlier article, we outlined the ECI budget request made by the President for FY19. These numbers were also very encouraging. The President’s FY19 ECI budget request was for a total of $636 million in the Department of Energy (DOE). This is below the FY18 omnibus number, but that will likely be adjusted as the request works its way through the Congressional process. The NNSA FY19 request for ECI is $163 million, which is the same as the FY18 omnibus number. The SC ECI FY19 request is for $473 million and that is below the final FY18 omnibus number, but again can be adjusted by Congress.

With these budget numbers, it is now up to the DOE SC and NNSA programs to continue to execute the work needed to deliver “capable” exascale computers starting 2021. A big part of that will be the CORAL-2 procurements that should be released shortly. Just as for the previous CORAL-1 procurement, to mitigate technology risks, CORAL-2 expects to procure machines with two different architectures. One is slated to go to the Oak Ridge Leadership Computing Facility (OLCF) for 2021 delivery and the other, depending on the availability of funds, to the Argonne Leadership Computing Facility (ALCF) for delivery in 2022. The ALCF exascale system would be in addition to the “novel” architecture system currently being built by Intel and known as A21 (formerly Aurora). The NNSA exascale system is expected to start its installation in 2022 at LLNL. The NNSA is expected to choose one of the two different SC systems, but reserves the option of choosing a third architecture.

Also, the ECP will not have any funding excuses for delivering the technologies to make the future exascale computers “productive.” The ECP leadership transition from Paul Messina to Doug Kothe has been completed along with several leadership changes at the sub-project level. During the December advisory committee meeting, Kothe talked about installing project planning processes that provide a good view of tasks, milestones, interdependencies and risks. This is similar to the approach he used before with great success when he was the Director of the Consortium for Advanced Simulation of Light-water-reactors (CASL). CASL is a DOE Energy Innovation Hub, which in the words of former Secretary of Energy Steve Chu, was required to have a “fierce sense of urgency.” Given all the recent good news, ECI also seems to be getting that similar sense of urgency.

As messy as the end was, the FY18 budget process is now complete. The numbers for the U.S. exascale program look very good and the prospects for the next year are at least as good and could get better. The worldwide competition for exascale supremacy is still on. China, Japan, and Europe are all making announcements about their plans. The great news is that there are no questions that the U.S. is in the race. In the final analysis, there is no reason to doubt the country’s commitment to retaining and building its leadership in the important strategic technology of exascale computing.

About the Author

Alex Larzelere is a senior fellow at the U.S. Council on Competitiveness, the president of Larzelere & Associates Consulting and HPCwire’s policy editor. He is currently a technologist, speaker and author on a number of disruptive technologies that include: advanced modeling and simulation; high performance computing; artificial intelligence; the Internet of Things; and additive manufacturing. Alex’s career has included time in federal service (working closely with DOE national labs), private industry, and as founder of a small business. Throughout that time, he led programs that implemented the use of cutting edge advanced computing technologies to enable high resolution, multi-physics simulations of complex physical systems. Alex is the author of “Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI).”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This