IBM Expands Quantum Computing Network

By Tiffany Trader

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qubits isn’t enough, there needs to be an engaged ecosystem of partners. As part of its strategy to transition from quantum science to what IBM calls quantum-readiness, Big Blue held the first IBM Q Summit in Palo Alto, California, today (April 5), welcoming a group of startups into its quantum network.

“Membership in the network will enable these startups to run experiments and algorithms on IBM quantum computers via cloud-based access,” explained Jeff Welser, director, IBM Research – Almaden, in a blog post. “Additionally, these startup members will have the opportunity to collaborate with IBM researchers and technical SMEs on potential applications, as well as other IBM Q Network organizations.”

The Q Network was launched in December in partnership with both industry and academic and government clients, including JP Morgan Chase, Daimler, Samsung, JSR, Barclays, Keio University, Honda, Oak Ridge National Lab, University of Oxford, University of Melbourne, Hitachi Metals and Nagase. Now IBM has brought in these eight industry-leading startups: Cambridge Quantum Computing (CQC), 1QBit, QC Ware, Q-CTRL, Zapata Computing, Strangeworks, QxBranch, and Quantum Benchmark. (Additional info at end of article.)

Quantum was a major topic of the inaugural IBM Think conference held in Las Vegas last month, where a number of featured speakers shared an optimistic timeline for establishing production usable applications.

Arvind Krishna, senior vice president, Hybrid Cloud, and director of IBM Research, said he believes IBM will show a practical quantum advantage within five years and it will have built capable machines for that purpose in three-to-five years.

Krishna hailed a coming era of practical quantum computing. “Quantum computers will help us solve problems that classical computers never could, in areas such as materials, medicines, transportation logistics, and financial risk,” he said during a keynote address.

IBM has been focused on making the engineering more stable and robust to enable a broader set of users, outside the physics laboratory. “To exploit and win at quantum, you actually have to have a real quantum computer,” said Krishna.

The community ecosystem is where IBM is distinguishing itself in the tight landscape of quantum competitors, that includes Google, Intel, Microsoft, early pioneer in quantum annealing D-Wave, and Berkeley-based startup Rigetti.

IBM has a set of three prototype quantum computers, real quantum devices not simulators, made available through its cloud network, which in just two years has seen 80,000 users run more than 3 million remote executions. There are 5-qubit and 16-qubit quantum systems available to anyone with an internet connection via IBM’s Q Experience platform, and a larger 20-qubit machine for select Q Network partners. IBM has also successfully built an operational prototype 50-qubit processor that will be made available in the next generation IBM Q systems.

As IBM grows its Q Network partner ecosystem, participating organizations will have various levels of cloud-based access to quantum expertise and resources. This means that not all members will get time on the biggest Q System, but startups in the quantum computing space will get “deeper access to APIs and advanced quantum software tools, libraries and applications, as well as consultation on emerging quantum technologies and applications from IBM scientists, engineers and consultants,” according to Welser.

The goal of the Q Network is to advance practical applications for business and science and ultimately usher in the commercial quantum era. “We will emerge from this transitional era and enter the era of quantum advantage when we run the first commercial application. It’s not about arbitrary tests or quantum supremacy, it’s very practical,” said Anthony Annunziata, associate director, IBM Q, at last month’s event. “When we can do practical things, we will have achieved the practical era.”

By making the machines available to a broader community, IBM is seeding the development of a software and user ecosystem. Annunziata stressed the importance of educating and preparing users across organizations for the coming of quantum computing. “It doesn’t matter how much we can abstract away,” he said, “quantum computing is just different. It takes a different mindset and skill set to program a quantum computer, especially to take advantage of it.”

There are two different ways of programming the IBM Q network machines: a graphical interface with drag-and-drop operations and an open-source software developer kit called QISKit. QISKit, as IBM’s Talia Gershon enthusiastically explained in her keynote talk, makes it possible to entangle two qubits with two lines of code.

Talia Gershon presenting at IBM Think 2018

Gershon, senior manager, AI Challenges and Quantum Experiences at IBM, holds that having fundamentally new ways of doing computation will open up a new paradigm in how we approach problems, but first we have to stop “thinking too classically.”

“Thinking too classically, as my colleague Jay Gambetta says, means you’re trying to apply linear classical logical thinking to understand something quantum and it doesn’t work,” said Gershon. “Thinking too classically is a real problem that hinders progress so how do we get people to change the way they think? Well we start in the classroom. When Einstein first discovered relativity I’m sure nobody intuitively got it and understood why was important and today it’s in every modern physics classroom in the world.

“Within five years the same thing will happen with quantum computing. Not only will physics departments offer quantum information classes but computer science departments will offer a quantum track. Electrical engineering departments will teach students about quantum circuits and microwave signal processing and chemistry classes will teach students not only how to simulate molecules on a classical machine but also on a quantum computer.”


Descriptions of the eight startups selected by IBM to be part of the Q Network:

•  Zapata Computing – Based in Cambridge, Mass., Zapata Computing is a quantum software, applications and services company developing algorithms for chemistry, machine learning, security, and error correction.

• Strangeworks – Based in Austin, Texas, and founded by William Hurley, Strangeworks is a quantum computing software company designing and delivering tools for software developers and systems management for IT Administrators and CIOs.

• QxBranch – Headquartered in Washington, D.C., QxBranch delivers advanced data analytics for finance, insurance, energy, and security customers worldwide. QxBranch is developing tools and applications enabled by quantum computing with a focus on machine learning and risk analytics.

• Quantum Benchmark – Quantum Benchmark is a venture-backed software company led by a team of the top research scientists and engineers in quantum computing, with headquarters in Kitchener-Waterloo, Canada. Quantum Benchmark provides solutions that enable error characterization, error mitigation, error correction and performance validation for quantum computing hardware.

• QC Ware – Based in Palo Alto, Calif., QC Ware develops hardware-agnostic enterprise software solutions running on quantum computers. QC Ware’s investors include Airbus Ventures, DE Shaw Ventures and Alchemist, and it has relationships with NASA and other government agencies. QC Ware won a NSF grant, and its customers include Fortune 500 industrial and technology companies.

• Q-CTRL – This Sydney, Australia-based startup’s hardware agnostic platform – Black Opal – gives users the ability to design and deploy the most effective controls to suppress errors in their quantum hardware before they accumulate. Q-CTRL is backed by Main Sequence Ventures and Horizons Ventures.

• Cambridge Quantum Computing (CQC) – Established in 2014 in the UK, CQC combines expertise in quantum information processing, quantum technologies, artificial intelligence, quantum chemistry, optimization and pattern recognition. CQC designs solutions such as a proprietary platform agnostic compiler that will allow developers and users to benefit from quantum computing even in its earliest forms. CQC also has a growing focus in quantum technologies that relate to encryption and security.

 1QBit – Headquartered in Vancouver, Canada, and founded in 2012, 1Qbit develops general purpose algorithms for quantum computing hardware. The company’s hardware-agnostic platforms and services are designed to enable the development of applications which scale alongside the advances in both classical and quantum computers. 1QBit is backed by Fujitsu Limited, CME Ventures, Accenture, Allianz and The Royal Bank of Scotland.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire