IBM Expands Quantum Computing Network

By Tiffany Trader

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qubits isn’t enough, there needs to be an engaged ecosystem of partners. As part of its strategy to transition from quantum science to what IBM calls quantum-readiness, Big Blue held the first IBM Q Summit in Palo Alto, California, today (April 5), welcoming a group of startups into its quantum network.

“Membership in the network will enable these startups to run experiments and algorithms on IBM quantum computers via cloud-based access,” explained Jeff Welser, director, IBM Research – Almaden, in a blog post. “Additionally, these startup members will have the opportunity to collaborate with IBM researchers and technical SMEs on potential applications, as well as other IBM Q Network organizations.”

The Q Network was launched in December in partnership with both industry and academic and government clients, including JP Morgan Chase, Daimler, Samsung, JSR, Barclays, Keio University, Honda, Oak Ridge National Lab, University of Oxford, University of Melbourne, Hitachi Metals and Nagase. Now IBM has brought in these eight industry-leading startups: Cambridge Quantum Computing (CQC), 1QBit, QC Ware, Q-CTRL, Zapata Computing, Strangeworks, QxBranch, and Quantum Benchmark. (Additional info at end of article.)

Quantum was a major topic of the inaugural IBM Think conference held in Las Vegas last month, where a number of featured speakers shared an optimistic timeline for establishing production usable applications.

Arvind Krishna, senior vice president, Hybrid Cloud, and director of IBM Research, said he believes IBM will show a practical quantum advantage within five years and it will have built capable machines for that purpose in three-to-five years.

Krishna hailed a coming era of practical quantum computing. “Quantum computers will help us solve problems that classical computers never could, in areas such as materials, medicines, transportation logistics, and financial risk,” he said during a keynote address.

IBM has been focused on making the engineering more stable and robust to enable a broader set of users, outside the physics laboratory. “To exploit and win at quantum, you actually have to have a real quantum computer,” said Krishna.

The community ecosystem is where IBM is distinguishing itself in the tight landscape of quantum competitors, that includes Google, Intel, Microsoft, early pioneer in quantum annealing D-Wave, and Berkeley-based startup Rigetti.

IBM has a set of three prototype quantum computers, real quantum devices not simulators, made available through its cloud network, which in just two years has seen 80,000 users run more than 3 million remote executions. There are 5-qubit and 16-qubit quantum systems available to anyone with an internet connection via IBM’s Q Experience platform, and a larger 20-qubit machine for select Q Network partners. IBM has also successfully built an operational prototype 50-qubit processor that will be made available in the next generation IBM Q systems.

As IBM grows its Q Network partner ecosystem, participating organizations will have various levels of cloud-based access to quantum expertise and resources. This means that not all members will get time on the biggest Q System, but startups in the quantum computing space will get “deeper access to APIs and advanced quantum software tools, libraries and applications, as well as consultation on emerging quantum technologies and applications from IBM scientists, engineers and consultants,” according to Welser.

The goal of the Q Network is to advance practical applications for business and science and ultimately usher in the commercial quantum era. “We will emerge from this transitional era and enter the era of quantum advantage when we run the first commercial application. It’s not about arbitrary tests or quantum supremacy, it’s very practical,” said Anthony Annunziata, associate director, IBM Q, at last month’s event. “When we can do practical things, we will have achieved the practical era.”

By making the machines available to a broader community, IBM is seeding the development of a software and user ecosystem. Annunziata stressed the importance of educating and preparing users across organizations for the coming of quantum computing. “It doesn’t matter how much we can abstract away,” he said, “quantum computing is just different. It takes a different mindset and skill set to program a quantum computer, especially to take advantage of it.”

There are two different ways of programming the IBM Q network machines: a graphical interface with drag-and-drop operations and an open-source software developer kit called QISKit. QISKit, as IBM’s Talia Gershon enthusiastically explained in her keynote talk, makes it possible to entangle two qubits with two lines of code.

Talia Gershon presenting at IBM Think 2018

Gershon, senior manager, AI Challenges and Quantum Experiences at IBM, holds that having fundamentally new ways of doing computation will open up a new paradigm in how we approach problems, but first we have to stop “thinking too classically.”

“Thinking too classically, as my colleague Jay Gambetta says, means you’re trying to apply linear classical logical thinking to understand something quantum and it doesn’t work,” said Gershon. “Thinking too classically is a real problem that hinders progress so how do we get people to change the way they think? Well we start in the classroom. When Einstein first discovered relativity I’m sure nobody intuitively got it and understood why was important and today it’s in every modern physics classroom in the world.

“Within five years the same thing will happen with quantum computing. Not only will physics departments offer quantum information classes but computer science departments will offer a quantum track. Electrical engineering departments will teach students about quantum circuits and microwave signal processing and chemistry classes will teach students not only how to simulate molecules on a classical machine but also on a quantum computer.”


Descriptions of the eight startups selected by IBM to be part of the Q Network:

•  Zapata Computing – Based in Cambridge, Mass., Zapata Computing is a quantum software, applications and services company developing algorithms for chemistry, machine learning, security, and error correction.

• Strangeworks – Based in Austin, Texas, and founded by William Hurley, Strangeworks is a quantum computing software company designing and delivering tools for software developers and systems management for IT Administrators and CIOs.

• QxBranch – Headquartered in Washington, D.C., QxBranch delivers advanced data analytics for finance, insurance, energy, and security customers worldwide. QxBranch is developing tools and applications enabled by quantum computing with a focus on machine learning and risk analytics.

• Quantum Benchmark – Quantum Benchmark is a venture-backed software company led by a team of the top research scientists and engineers in quantum computing, with headquarters in Kitchener-Waterloo, Canada. Quantum Benchmark provides solutions that enable error characterization, error mitigation, error correction and performance validation for quantum computing hardware.

• QC Ware – Based in Palo Alto, Calif., QC Ware develops hardware-agnostic enterprise software solutions running on quantum computers. QC Ware’s investors include Airbus Ventures, DE Shaw Ventures and Alchemist, and it has relationships with NASA and other government agencies. QC Ware won a NSF grant, and its customers include Fortune 500 industrial and technology companies.

• Q-CTRL – This Sydney, Australia-based startup’s hardware agnostic platform – Black Opal – gives users the ability to design and deploy the most effective controls to suppress errors in their quantum hardware before they accumulate. Q-CTRL is backed by Main Sequence Ventures and Horizons Ventures.

• Cambridge Quantum Computing (CQC) – Established in 2014 in the UK, CQC combines expertise in quantum information processing, quantum technologies, artificial intelligence, quantum chemistry, optimization and pattern recognition. CQC designs solutions such as a proprietary platform agnostic compiler that will allow developers and users to benefit from quantum computing even in its earliest forms. CQC also has a growing focus in quantum technologies that relate to encryption and security.

 1QBit – Headquartered in Vancouver, Canada, and founded in 2012, 1Qbit develops general purpose algorithms for quantum computing hardware. The company’s hardware-agnostic platforms and services are designed to enable the development of applications which scale alongside the advances in both classical and quantum computers. 1QBit is backed by Fujitsu Limited, CME Ventures, Accenture, Allianz and The Royal Bank of Scotland.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This