IBM Expands Quantum Computing Network

By Tiffany Trader

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qubits isn’t enough, there needs to be an engaged ecosystem of partners. As part of its strategy to transition from quantum science to what IBM calls quantum-readiness, Big Blue held the first IBM Q Summit in Palo Alto, California, today (April 5), welcoming a group of startups into its quantum network.

“Membership in the network will enable these startups to run experiments and algorithms on IBM quantum computers via cloud-based access,” explained Jeff Welser, director, IBM Research – Almaden, in a blog post. “Additionally, these startup members will have the opportunity to collaborate with IBM researchers and technical SMEs on potential applications, as well as other IBM Q Network organizations.”

The Q Network was launched in December in partnership with both industry and academic and government clients, including JP Morgan Chase, Daimler, Samsung, JSR, Barclays, Keio University, Honda, Oak Ridge National Lab, University of Oxford, University of Melbourne, Hitachi Metals and Nagase. Now IBM has brought in these eight industry-leading startups: Cambridge Quantum Computing (CQC), 1QBit, QC Ware, Q-CTRL, Zapata Computing, Strangeworks, QxBranch, and Quantum Benchmark. (Additional info at end of article.)

Quantum was a major topic of the inaugural IBM Think conference held in Las Vegas last month, where a number of featured speakers shared an optimistic timeline for establishing production usable applications.

Arvind Krishna, senior vice president, Hybrid Cloud, and director of IBM Research, said he believes IBM will show a practical quantum advantage within five years and it will have built capable machines for that purpose in three-to-five years.

Krishna hailed a coming era of practical quantum computing. “Quantum computers will help us solve problems that classical computers never could, in areas such as materials, medicines, transportation logistics, and financial risk,” he said during a keynote address.

IBM has been focused on making the engineering more stable and robust to enable a broader set of users, outside the physics laboratory. “To exploit and win at quantum, you actually have to have a real quantum computer,” said Krishna.

The community ecosystem is where IBM is distinguishing itself in the tight landscape of quantum competitors, that includes Google, Intel, Microsoft, early pioneer in quantum annealing D-Wave, and Berkeley-based startup Rigetti.

IBM has a set of three prototype quantum computers, real quantum devices not simulators, made available through its cloud network, which in just two years has seen 80,000 users run more than 3 million remote executions. There are 5-qubit and 16-qubit quantum systems available to anyone with an internet connection via IBM’s Q Experience platform, and a larger 20-qubit machine for select Q Network partners. IBM has also successfully built an operational prototype 50-qubit processor that will be made available in the next generation IBM Q systems.

As IBM grows its Q Network partner ecosystem, participating organizations will have various levels of cloud-based access to quantum expertise and resources. This means that not all members will get time on the biggest Q System, but startups in the quantum computing space will get “deeper access to APIs and advanced quantum software tools, libraries and applications, as well as consultation on emerging quantum technologies and applications from IBM scientists, engineers and consultants,” according to Welser.

The goal of the Q Network is to advance practical applications for business and science and ultimately usher in the commercial quantum era. “We will emerge from this transitional era and enter the era of quantum advantage when we run the first commercial application. It’s not about arbitrary tests or quantum supremacy, it’s very practical,” said Anthony Annunziata, associate director, IBM Q, at last month’s event. “When we can do practical things, we will have achieved the practical era.”

By making the machines available to a broader community, IBM is seeding the development of a software and user ecosystem. Annunziata stressed the importance of educating and preparing users across organizations for the coming of quantum computing. “It doesn’t matter how much we can abstract away,” he said, “quantum computing is just different. It takes a different mindset and skill set to program a quantum computer, especially to take advantage of it.”

There are two different ways of programming the IBM Q network machines: a graphical interface with drag-and-drop operations and an open-source software developer kit called QISKit. QISKit, as IBM’s Talia Gershon enthusiastically explained in her keynote talk, makes it possible to entangle two qubits with two lines of code.

Talia Gershon presenting at IBM Think 2018

Gershon, senior manager, AI Challenges and Quantum Experiences at IBM, holds that having fundamentally new ways of doing computation will open up a new paradigm in how we approach problems, but first we have to stop “thinking too classically.”

“Thinking too classically, as my colleague Jay Gambetta says, means you’re trying to apply linear classical logical thinking to understand something quantum and it doesn’t work,” said Gershon. “Thinking too classically is a real problem that hinders progress so how do we get people to change the way they think? Well we start in the classroom. When Einstein first discovered relativity I’m sure nobody intuitively got it and understood why was important and today it’s in every modern physics classroom in the world.

“Within five years the same thing will happen with quantum computing. Not only will physics departments offer quantum information classes but computer science departments will offer a quantum track. Electrical engineering departments will teach students about quantum circuits and microwave signal processing and chemistry classes will teach students not only how to simulate molecules on a classical machine but also on a quantum computer.”


Descriptions of the eight startups selected by IBM to be part of the Q Network:

•  Zapata Computing – Based in Cambridge, Mass., Zapata Computing is a quantum software, applications and services company developing algorithms for chemistry, machine learning, security, and error correction.

• Strangeworks – Based in Austin, Texas, and founded by William Hurley, Strangeworks is a quantum computing software company designing and delivering tools for software developers and systems management for IT Administrators and CIOs.

• QxBranch – Headquartered in Washington, D.C., QxBranch delivers advanced data analytics for finance, insurance, energy, and security customers worldwide. QxBranch is developing tools and applications enabled by quantum computing with a focus on machine learning and risk analytics.

• Quantum Benchmark – Quantum Benchmark is a venture-backed software company led by a team of the top research scientists and engineers in quantum computing, with headquarters in Kitchener-Waterloo, Canada. Quantum Benchmark provides solutions that enable error characterization, error mitigation, error correction and performance validation for quantum computing hardware.

• QC Ware – Based in Palo Alto, Calif., QC Ware develops hardware-agnostic enterprise software solutions running on quantum computers. QC Ware’s investors include Airbus Ventures, DE Shaw Ventures and Alchemist, and it has relationships with NASA and other government agencies. QC Ware won a NSF grant, and its customers include Fortune 500 industrial and technology companies.

• Q-CTRL – This Sydney, Australia-based startup’s hardware agnostic platform – Black Opal – gives users the ability to design and deploy the most effective controls to suppress errors in their quantum hardware before they accumulate. Q-CTRL is backed by Main Sequence Ventures and Horizons Ventures.

• Cambridge Quantum Computing (CQC) – Established in 2014 in the UK, CQC combines expertise in quantum information processing, quantum technologies, artificial intelligence, quantum chemistry, optimization and pattern recognition. CQC designs solutions such as a proprietary platform agnostic compiler that will allow developers and users to benefit from quantum computing even in its earliest forms. CQC also has a growing focus in quantum technologies that relate to encryption and security.

 1QBit – Headquartered in Vancouver, Canada, and founded in 2012, 1Qbit develops general purpose algorithms for quantum computing hardware. The company’s hardware-agnostic platforms and services are designed to enable the development of applications which scale alongside the advances in both classical and quantum computers. 1QBit is backed by Fujitsu Limited, CME Ventures, Accenture, Allianz and The Royal Bank of Scotland.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

MLPerf Expands Toolset; Launches Inferencing Suite

June 24, 2019

MLPerf today launched a benchmark suite for inferencing, v0.5, which joins the MLPerf training suite launched a little over a year ago. The new inferencing benchmark, which has been anticipated, covers models applicable Read more…

By John Russell

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – and now, Tom Coughlin (on behalf of Supermicro) has provided a Read more…

By Oliver Peckham

U.S. Blacklists Sugon, 4 Others from Access to Advanced Technology

June 21, 2019

Just as ISC19 wrapped up yesterday, showcasing the latest in supercomputing technology, the U.S. added five Chinese entities including Sugon to its blacklist prohibiting them from access to advanced technology vital to s Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Avoid AI Redo’s by Starting with the Right Infrastructure

Do you know if you have the right infrastructure for AI? Many organizations don’t have it. In a recent IDC survey, “77.1% of respondents say they ran into one or more limitations with their AI infrastructure on-premise and 90.3% ran into compute limitations in the cloud.” Read more…

Is Weather and Climate Prediction the Perfect ‘Pilot’ for Exascale?

June 21, 2019

At ISC 2019 this week, Peter Bauer – deputy director of research for the European Centre for Medium-Range Weather Forecasts (ECMWF) – outlined an ambitious vision for the future of weather and climate prediction. For Read more…

By Oliver Peckham

MLPerf Expands Toolset; Launches Inferencing Suite

June 24, 2019

MLPerf today launched a benchmark suite for inferencing, v0.5, which joins the MLPerf training suite launched a little over a year ago. The new inferencing benc Read more…

By John Russell

Is Weather and Climate Prediction the Perfect ‘Pilot’ for Exascale?

June 21, 2019

At ISC 2019 this week, Peter Bauer – deputy director of research for the European Centre for Medium-Range Weather Forecasts (ECMWF) – outlined an ambitious Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

IBM Claims No. 1 Commercial Supercomputer with Total Oil & Gas System 

June 20, 2019

IBM can now boast not only the two most powerful supercomputers in the world, it also has claimed the top spot for a supercomputer used in a commercial setting. Read more…

By Staff Report

HPC on Pace for 5-Year 6.8% CAGR; Guess Which Hyperscaler Spent $10B on IT Last Year?

June 20, 2019

In the neck-and-neck horse race for HPC server market share, HPE has hung on to a slim, shrinking lead over Dell EMC – but if server and storage market shares Read more…

By Doug Black

ISC 2019 Research Paper Award Winners Announced

June 19, 2019

At the 2019 International Supercomputing Conference (ISC) in Frankfurt this week, the ISC committee awarded the event's top prizes for outstanding research pape Read more…

By Oliver Peckham

ISC Keynote: The Algorithms of Life – Scientific Computing for Systems Biology

June 19, 2019

Systems biology has existed loosely under many definitions for a couple of decades. It’s the notion of describing living systems using first-principle physics Read more…

By John Russell

Summit Achieves 445 Petaflops on New ‘HPL-AI’ Benchmark

June 19, 2019

Summit -- the world's top-ranking supercomputer -- has been used to test-drive a new mixed-precision Linpack benchmark, which for now is being called HPL-AI. Traditionally, supercomputer performance is measured using the High-Performance Linpack (HPL) benchmark, which is the basis for the Top500 list that biannually ranks world's fastest supercomputers. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This