Cloud-Readiness and Looking Beyond Application Scaling

By Chris Downing

April 11, 2018

Editor’s note: In a follow-on to his well-received “How the Cloud Is Falling Short for HPC” article, Red Oak’s Chris Downing turns his attention to getting applications cloud-ready.

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title application readiness, lets us examine how the run-time of the job is affected by the environment we are running in. The second, workflow readiness, forces us to think more broadly about how the jobs fit in to our day-to-day activities, and how effectively we are getting things done.

Application readiness

Application performance is fairly well understood in the HPC community. We go to great lengths to benchmark codes and determine the optimum job parameters based on the scaling characteristics observed. We avoid overheads and penalties such as those arising from virtualisation, and we insist on the most performant hardware our budgets can stretch to.

There are a few simple steps application developers can take to make their software more amenable to running in the cloud. The most crucial is a sane approach to checkpointing – the majority of well-developed apps do this by default, but it is a feature which could easily be overlooked in a home-spun tool which gradually grows in popularity and scope. Efficient checkpoint mechanisms are crucial to on-premise HPC, but even more so in the cloud where pre-emptible instances will be the de facto job environment.

Another aspect to consider is the potential for changes to temporary storage. The overwhelming majority of HPC applications write their outputs to simple text files, with the more keenly developed software making use of the likes of HDF5 or NetCDF to manage their data. Co-existence of HPC workloads with enterprise IT tools allows us to open up a few new avenues of research when figuring out how to deliver better performance – the simplest of which would be the use of databases. Running multiple “production” databases on a HPC cluster is not common due to the perceived fragility of the infrastructure, but in the cloud, it would be trivial. Depending on the application, a database could offer performance benefits in the analysis phase, as well as opening the door to providing results of large simulations to the wider community as a service.

Finally, users should remember that the many (perhaps most) applications do not scale particularly well anyway or are often only ran over a small number of nodes – in that case, using fewer cores for a longer duration is more efficient provided a longer wait is tolerable. While the poor price/performance of public clouds for multi-node scientific computing can easily be interpreted as a reason not to use these resources, it should instead be thought of as a gentle shove away from wasteful practices, and towards patience. The focus for applications running in the cloud should therefore be on extracting value from the outputs, which is a workflow problem rather than an application one.

Workflow readiness

The workflow which surrounds and links together applications is another area where optimisation will need to occur and is arguably the area where we ought to focus our attention when considering the cloud. At the design-of-experiments level, researchers who are being steered towards cloud usage should consider whether their research project is making best use of the available resource scaling. The sort of large scale, embarrassingly-parallel parameter space exploration which might have struggled to get approval to run on a crowded HPC system is a perfect model for the cloud – the researcher is effectively limited only by their budget and their ability to deal with the job outputs.

Storage utilisation is another area where workflows can be optimised for the cloud. When jobs directly interact with a permanent file system as is the case for traditional HPC, users do not need to worry much about what state their data is in until they actually want to perform their analysis. The same model could work in the cloud, but the ephemeral nature of cloud resources means that each job would need to first get data out of a separate persistent store (likely an object storage service), then put the file back at the end. Rather than seeing this as a nuisance, users should consider whether “serverless” computing offers a route to turn these put/get steps into part of an automated data analysis pipeline, for example by running data cleansing or analysis scripts programmatically. Rather than the user waiting for jobs to finish them performing a series of manual steps to extract something valuable, portions of the analysis can be turned into a scripted procedure which occurs automatically once the necessary data are available.

Containerised workflows are increasingly popular in HPC with Singularity leading the charge towards making reproducible user-defined environments the norm. Running in a container makes HPC jobs portable, both between different on-premise systems and between physical and cloud resources. Combining containerised applications with general-purpose serverless analysis scripts, it is easy to imagine how a community of researchers using the same code might be able to put together a set of computational and analysis pipelines, leading to more standardised outputs and easing the process of turning discoveries into publication-ready results. More importantly – rather than just sharing their outputs, researchers would have an easier way to share their whole pipeline. This might raise some questions regarding competition but is surely the best route to improving the reproducibility of science.

Making it happen

Most of the modifications described here are well outside the comfort zone of a novice research software engineer. Likewise, refactoring crusty Fortran code to accommodate modern system architectures is likely to be just as unappealing to the new wave of computer scientists as working on mainframe Cobol would be – perhaps even less so, given the likely salary differential. There is therefore room in the middle for a new skillset, one which brings together an interest in scientific computing with an acceptance that traditional HPC cluster designs might not be the future – something like Scientific DevOps.

As with “normal” research software engineering in years past (and, some would argue, still to this day), the problem will inevitably be money. Paying people to churn out publications as part of the process of scientific discovery is accepted practice but exploring new methods of how to get stuff done has proved to be a much tougher sell. Those responsible for dishing out grant money tend to be somewhat cautious, and traditionalists.

We should therefore be looking to the cloud providers themselves to drive this innovation – as the adage goes, you need to spend money to make money, and right now a large pool of scientific computing users are lagging far behind their enterprise counterparts in cloud adoption. Tapping into this market will naturally require some investment on the part of Amazon, Google and Microsoft – but they should recognise that people and skills are more important than new features when splashing around their marketing budget.

About the Author

Chris Downing joined Red Oak Consulting @redoakHPC in 2014 on completion of his PhD thesis in computational chemistry at University College London. Having performed academic research using the last two UK national supercomputing services (HECToR and ARCHER) as well as a number of smaller HPC resources, Chris is familiar with the complexities of matching both hardware and software to user requirements. His detailed knowledge of materials chemistry and solid-state physics means that he is well-placed to offer insight into emerging technologies. Chris, Senior Consultant, has a highly technical skill set working mainly in the innovation and research team providing a broad range of technical consultancy services. To find out more www.redoakconsulting.co.uk.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Air Force Research Laboratory Unveils First Shared, Classified DoD HPC Capability

February 28, 2019

In a ceremony on Tuesday, the Air Force Research Laboratory unveiled four new computing clusters, providing the capability for what it is calling the first-ever Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This