Cloud-Readiness and Looking Beyond Application Scaling

By Chris Downing

April 11, 2018

Editor’s note: In a follow-on to his well-received “How the Cloud Is Falling Short for HPC” article, Red Oak’s Chris Downing turns his attention to getting applications cloud-ready.

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title application readiness, lets us examine how the run-time of the job is affected by the environment we are running in. The second, workflow readiness, forces us to think more broadly about how the jobs fit in to our day-to-day activities, and how effectively we are getting things done.

Application readiness

Application performance is fairly well understood in the HPC community. We go to great lengths to benchmark codes and determine the optimum job parameters based on the scaling characteristics observed. We avoid overheads and penalties such as those arising from virtualisation, and we insist on the most performant hardware our budgets can stretch to.

There are a few simple steps application developers can take to make their software more amenable to running in the cloud. The most crucial is a sane approach to checkpointing – the majority of well-developed apps do this by default, but it is a feature which could easily be overlooked in a home-spun tool which gradually grows in popularity and scope. Efficient checkpoint mechanisms are crucial to on-premise HPC, but even more so in the cloud where pre-emptible instances will be the de facto job environment.

Another aspect to consider is the potential for changes to temporary storage. The overwhelming majority of HPC applications write their outputs to simple text files, with the more keenly developed software making use of the likes of HDF5 or NetCDF to manage their data. Co-existence of HPC workloads with enterprise IT tools allows us to open up a few new avenues of research when figuring out how to deliver better performance – the simplest of which would be the use of databases. Running multiple “production” databases on a HPC cluster is not common due to the perceived fragility of the infrastructure, but in the cloud, it would be trivial. Depending on the application, a database could offer performance benefits in the analysis phase, as well as opening the door to providing results of large simulations to the wider community as a service.

Finally, users should remember that the many (perhaps most) applications do not scale particularly well anyway or are often only ran over a small number of nodes – in that case, using fewer cores for a longer duration is more efficient provided a longer wait is tolerable. While the poor price/performance of public clouds for multi-node scientific computing can easily be interpreted as a reason not to use these resources, it should instead be thought of as a gentle shove away from wasteful practices, and towards patience. The focus for applications running in the cloud should therefore be on extracting value from the outputs, which is a workflow problem rather than an application one.

Workflow readiness

The workflow which surrounds and links together applications is another area where optimisation will need to occur and is arguably the area where we ought to focus our attention when considering the cloud. At the design-of-experiments level, researchers who are being steered towards cloud usage should consider whether their research project is making best use of the available resource scaling. The sort of large scale, embarrassingly-parallel parameter space exploration which might have struggled to get approval to run on a crowded HPC system is a perfect model for the cloud – the researcher is effectively limited only by their budget and their ability to deal with the job outputs.

Storage utilisation is another area where workflows can be optimised for the cloud. When jobs directly interact with a permanent file system as is the case for traditional HPC, users do not need to worry much about what state their data is in until they actually want to perform their analysis. The same model could work in the cloud, but the ephemeral nature of cloud resources means that each job would need to first get data out of a separate persistent store (likely an object storage service), then put the file back at the end. Rather than seeing this as a nuisance, users should consider whether “serverless” computing offers a route to turn these put/get steps into part of an automated data analysis pipeline, for example by running data cleansing or analysis scripts programmatically. Rather than the user waiting for jobs to finish them performing a series of manual steps to extract something valuable, portions of the analysis can be turned into a scripted procedure which occurs automatically once the necessary data are available.

Containerised workflows are increasingly popular in HPC with Singularity leading the charge towards making reproducible user-defined environments the norm. Running in a container makes HPC jobs portable, both between different on-premise systems and between physical and cloud resources. Combining containerised applications with general-purpose serverless analysis scripts, it is easy to imagine how a community of researchers using the same code might be able to put together a set of computational and analysis pipelines, leading to more standardised outputs and easing the process of turning discoveries into publication-ready results. More importantly – rather than just sharing their outputs, researchers would have an easier way to share their whole pipeline. This might raise some questions regarding competition but is surely the best route to improving the reproducibility of science.

Making it happen

Most of the modifications described here are well outside the comfort zone of a novice research software engineer. Likewise, refactoring crusty Fortran code to accommodate modern system architectures is likely to be just as unappealing to the new wave of computer scientists as working on mainframe Cobol would be – perhaps even less so, given the likely salary differential. There is therefore room in the middle for a new skillset, one which brings together an interest in scientific computing with an acceptance that traditional HPC cluster designs might not be the future – something like Scientific DevOps.

As with “normal” research software engineering in years past (and, some would argue, still to this day), the problem will inevitably be money. Paying people to churn out publications as part of the process of scientific discovery is accepted practice but exploring new methods of how to get stuff done has proved to be a much tougher sell. Those responsible for dishing out grant money tend to be somewhat cautious, and traditionalists.

We should therefore be looking to the cloud providers themselves to drive this innovation – as the adage goes, you need to spend money to make money, and right now a large pool of scientific computing users are lagging far behind their enterprise counterparts in cloud adoption. Tapping into this market will naturally require some investment on the part of Amazon, Google and Microsoft – but they should recognise that people and skills are more important than new features when splashing around their marketing budget.

About the Author

Chris Downing joined Red Oak Consulting @redoakHPC in 2014 on completion of his PhD thesis in computational chemistry at University College London. Having performed academic research using the last two UK national supercomputing services (HECToR and ARCHER) as well as a number of smaller HPC resources, Chris is familiar with the complexities of matching both hardware and software to user requirements. His detailed knowledge of materials chemistry and solid-state physics means that he is well-placed to offer insight into emerging technologies. Chris, Senior Consultant, has a highly technical skill set working mainly in the innovation and research team providing a broad range of technical consultancy services. To find out more www.redoakconsulting.co.uk.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This