Cloud-Readiness and Looking Beyond Application Scaling

By Chris Downing

April 11, 2018

Editor’s note: In a follow-on to his well-received “How the Cloud Is Falling Short for HPC” article, Red Oak’s Chris Downing turns his attention to getting applications cloud-ready.

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title application readiness, lets us examine how the run-time of the job is affected by the environment we are running in. The second, workflow readiness, forces us to think more broadly about how the jobs fit in to our day-to-day activities, and how effectively we are getting things done.

Application readiness

Application performance is fairly well understood in the HPC community. We go to great lengths to benchmark codes and determine the optimum job parameters based on the scaling characteristics observed. We avoid overheads and penalties such as those arising from virtualisation, and we insist on the most performant hardware our budgets can stretch to.

There are a few simple steps application developers can take to make their software more amenable to running in the cloud. The most crucial is a sane approach to checkpointing – the majority of well-developed apps do this by default, but it is a feature which could easily be overlooked in a home-spun tool which gradually grows in popularity and scope. Efficient checkpoint mechanisms are crucial to on-premise HPC, but even more so in the cloud where pre-emptible instances will be the de facto job environment.

Another aspect to consider is the potential for changes to temporary storage. The overwhelming majority of HPC applications write their outputs to simple text files, with the more keenly developed software making use of the likes of HDF5 or NetCDF to manage their data. Co-existence of HPC workloads with enterprise IT tools allows us to open up a few new avenues of research when figuring out how to deliver better performance – the simplest of which would be the use of databases. Running multiple “production” databases on a HPC cluster is not common due to the perceived fragility of the infrastructure, but in the cloud, it would be trivial. Depending on the application, a database could offer performance benefits in the analysis phase, as well as opening the door to providing results of large simulations to the wider community as a service.

Finally, users should remember that the many (perhaps most) applications do not scale particularly well anyway or are often only ran over a small number of nodes – in that case, using fewer cores for a longer duration is more efficient provided a longer wait is tolerable. While the poor price/performance of public clouds for multi-node scientific computing can easily be interpreted as a reason not to use these resources, it should instead be thought of as a gentle shove away from wasteful practices, and towards patience. The focus for applications running in the cloud should therefore be on extracting value from the outputs, which is a workflow problem rather than an application one.

Workflow readiness

The workflow which surrounds and links together applications is another area where optimisation will need to occur and is arguably the area where we ought to focus our attention when considering the cloud. At the design-of-experiments level, researchers who are being steered towards cloud usage should consider whether their research project is making best use of the available resource scaling. The sort of large scale, embarrassingly-parallel parameter space exploration which might have struggled to get approval to run on a crowded HPC system is a perfect model for the cloud – the researcher is effectively limited only by their budget and their ability to deal with the job outputs.

Storage utilisation is another area where workflows can be optimised for the cloud. When jobs directly interact with a permanent file system as is the case for traditional HPC, users do not need to worry much about what state their data is in until they actually want to perform their analysis. The same model could work in the cloud, but the ephemeral nature of cloud resources means that each job would need to first get data out of a separate persistent store (likely an object storage service), then put the file back at the end. Rather than seeing this as a nuisance, users should consider whether “serverless” computing offers a route to turn these put/get steps into part of an automated data analysis pipeline, for example by running data cleansing or analysis scripts programmatically. Rather than the user waiting for jobs to finish them performing a series of manual steps to extract something valuable, portions of the analysis can be turned into a scripted procedure which occurs automatically once the necessary data are available.

Containerised workflows are increasingly popular in HPC with Singularity leading the charge towards making reproducible user-defined environments the norm. Running in a container makes HPC jobs portable, both between different on-premise systems and between physical and cloud resources. Combining containerised applications with general-purpose serverless analysis scripts, it is easy to imagine how a community of researchers using the same code might be able to put together a set of computational and analysis pipelines, leading to more standardised outputs and easing the process of turning discoveries into publication-ready results. More importantly – rather than just sharing their outputs, researchers would have an easier way to share their whole pipeline. This might raise some questions regarding competition but is surely the best route to improving the reproducibility of science.

Making it happen

Most of the modifications described here are well outside the comfort zone of a novice research software engineer. Likewise, refactoring crusty Fortran code to accommodate modern system architectures is likely to be just as unappealing to the new wave of computer scientists as working on mainframe Cobol would be – perhaps even less so, given the likely salary differential. There is therefore room in the middle for a new skillset, one which brings together an interest in scientific computing with an acceptance that traditional HPC cluster designs might not be the future – something like Scientific DevOps.

As with “normal” research software engineering in years past (and, some would argue, still to this day), the problem will inevitably be money. Paying people to churn out publications as part of the process of scientific discovery is accepted practice but exploring new methods of how to get stuff done has proved to be a much tougher sell. Those responsible for dishing out grant money tend to be somewhat cautious, and traditionalists.

We should therefore be looking to the cloud providers themselves to drive this innovation – as the adage goes, you need to spend money to make money, and right now a large pool of scientific computing users are lagging far behind their enterprise counterparts in cloud adoption. Tapping into this market will naturally require some investment on the part of Amazon, Google and Microsoft – but they should recognise that people and skills are more important than new features when splashing around their marketing budget.

About the Author

Chris Downing joined Red Oak Consulting @redoakHPC in 2014 on completion of his PhD thesis in computational chemistry at University College London. Having performed academic research using the last two UK national supercomputing services (HECToR and ARCHER) as well as a number of smaller HPC resources, Chris is familiar with the complexities of matching both hardware and software to user requirements. His detailed knowledge of materials chemistry and solid-state physics means that he is well-placed to offer insight into emerging technologies. Chris, Senior Consultant, has a highly technical skill set working mainly in the innovation and research team providing a broad range of technical consultancy services. To find out more www.redoakconsulting.co.uk.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire