US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

By Tiffany Trader

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with the release of the much-anticipated CORAL-2 request for proposals (RFP). Although funding is not yet secured, the anticipated budget range for each system is significant: $400 million to $600 million per machine including associated non-recurring engineering (NRE).

CORAL of course refers to the joint effort to procure next-generation supercomputers for Department of Energy’s National Laboratories at Oak Ridge, Argonne, and Livermore. The fruits of the original CORAL RFP include Summit and Sierra, ~200 petaflops systems being built by IBM in partnership with Nvidia and Mellanox for Oak Ridge and Livermore, respectively, and “A21,” the retooled Aurora contract with prime Intel (and partner Cray), destined for Argonne in 2021 and slated to be the United States’ first exascale machine.

The heavyweight supercomputers are required to meet the mission needs of the Advanced Scientific Computing Research (ASCR) Program within the DOE’s Office of Science and the Advanced Simulation and Computing (ASC) Program within the National Nuclear Security Administration.

The CORAL-2 collaboration specifically seeks to fund non-recurring engineering and up to three exascale-class systems: one at Oak Ridge, one at Livermore and a potential third system at Argonne if it chooses to make an award under the RFP and if funding is available. The Exascale Computing Project (ECP), a joint DOE-NNSA effort, has been organizing and leading R&D in the areas of the software stack, applications, and hardware to ensure “capable,” i.e., productively usable, exascale machines that can solve science problems 50x faster (or more complex) over today’s ~20-petaflops DOE systems (i.e., Sequoia and Titan). In terms of peak Linpack, 1.3 exaflops is the “desirable” target set by the DOE.

Like the original CORAL program, which kicked off in 2012, CORAL-2 has a mandate to field architecturally diverse machines in a way that manages risk during a period of rapid technological evolution. “Regardless of which system or systems are being discussed, the systems residing at or planned to reside at ORNL and ANL must be diverse from one another,” notes the CORAL-2 RFP cover letter [PDF]. Sharpening the point, that means the Oak Ridge system must be distinct from A21 and from a potential CORAL-2 machine at Argonne. It is conceivable, then, that this RFP may result in one, two or three different architectures, depending of course on the selections made by the labs and whether Argonne’s CORAL-2 machine comes to fruition.

“Diversity,” according to the RFP documents, “will be evaluated by how much the proposed system(s) promotes a competition of ideas and technologies; how much the proposed system(s) reduces risk that may be caused by delays or failure of a particular technology or shifts in vendor business focus, staff, or financial health; and how much the proposed system(s) diversity promotes a rich and healthy HPC ecosystem.”

Here is a listing of current and future CORAL machines:

Proposals for CORAL-2 are due in May with bidders to be selected later this year. Acquisition contracts are anticipated for 2019.

If Argonne takes delivery of A21 in 2021 and deploys an additional machine (or upgrade) in the third quarter of 2022, it would be fielding two exascale machines/builds in less than two years.

“Whether CORAL-2 winds up being two systems or three may come down to funding, which is ‘expected’ at this point, but not committed,” commented HPC veteran and market watcher Addison Snell, CEO of Intersect360 Research. “If ANL does not fund an exascale system as part of CORAL-2, I would nevertheless expect an exascale system there in a similar timeframe, just possibly funded separately.”

Several HPC community leaders we spoke with shared more pointed speculation on what the overture for a second exascale machine at Argonne so soon on the heels of A21 may indicate, insofar as there may be doubt about whether Intel’s “novel architecture” will satisfy the full scope of DOE’s needs. Given the close timing and the reality of lengthy procurement cycles, the decision on a follow-on will have to be made without the benefit of experience with A21.

Argonne’s Associate Laboratory Director for Computing, Environment and Life Sciences Rick Stevens, commenting for this piece, underscored the importance of technology diversity and shined a light on Argonne’s thinking. “We are very interested in getting as broad range of responses as possible to consider for our planning. We would love to have multiple choices to consider for the DOE landscape including exciting options for potential upgrades to Aurora,” he said.

If Intel, working with Cray, is able to fulfill the requirements for a 1-exaflops A21 machine in 2021, the pair may be in a favorable position to fulfill the more rigorous “capable exascale” requirements outlined by ECP and CORAL-2.

The overall bidding pool for CORAL-2 is likely to include IBM, Intel, Cray and Hewlett Packard Enterprise (HPE); upstart system-maker Nvidia may also have a hand to play. HPE could come in with a GPU-based machine or an implementation of its memory-centric architecture, known as The Machine. In IBM’s court, the successor architectures to Power9 are no doubt being looked at as candidates.

And while it’s always fun dishing over the sexy processing elements (with flavors from Intel, Nvidia, AMD and IBM on the tasting menu), Snell pointed out it is perhaps more interesting to prospect the interconnect topologies in the field. “Will we be looking at systems based on an upcoming version of a current technology, such as InfiniBand or OmniPath, or a future technology like Gen-Z, or something else proprietary?” he pondered.

Stevens weighed in on the many technological challenges still at hand, ranging from memory capacity, power consumption, and systems balance, but he noted that, fortunately, the DOE has been investing in many of these issues for many years, through the PathForward program and its predecessors, created to foster the technology pipeline needed for extreme-scale computing. It’s no accident or coincidence that we’ve already run through all the names in the current “Forward” program: AMD, Cray, HPE, IBM, Intel, and Nvidia.

“Hopefully the vendors will have some good options for us to consider,” said Stevens, adding that Argonne is seeking a broad set of responses from as many vendors as possible. “This RFP is really about opening up the aperture to new architectural concepts and to enable new partnerships in the vendor landscape. I think it’s particularly important to notice that we are interested in systems that can support the integration of simulation, data and machine learning. This is reflected in both the technology specifications as well as the benchmarks outlined in the RFP.”

Other community members also shared their reactions.

“It is good to see a commitment to high-end computing by DOE, though I note that the funding has not yet been secured,” said Bill Gropp, director of the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (home to the roughly 13-petaflops Cray “Blue Waters” supercomputer). “What is needed is a holistic approach to HEC; this addresses the next+1 generation of systems but not work on applications or algorithms.”

“What stands out [about the CORAL-2 RFP] is that it doesn’t take advantage of the diversity of systems to encourage specialization in the hardware to different data structure/algorithm choices,” Gropp added. “Once you decide to acquire several systems, you can consider specialization. Frankly, for example, GPU-based systems are specialized; they run some important algorithms very well, but are less effective at others. Rather than deny that, make it into a strength. There are hints of this in the way the different classes of benchmarks are described and the priorities placed on them [see page 23 of the RFP’s Proposal Evaluation and Proposal Preparation Instructions], but it could be much more explicit.

“Also, this line on page 23 stands out: “The technology must have potential commercial viability.” I understand the reasoning behind this, but it is an additional constraint that may limit the innovation that is possible. In any case, this is an indirect requirement. DOE is looking for viable technologies that it can support at reasonable cost. But this misses the point that using commodity (which is how commercial viability is often interpreted) technology has its own costs, in the part of the environment that I mentioned above and that is not covered by this RFP.”

Gropp, who is awaiting the results of the NSF Track 1 RFP that will award the follow-on to Blue Waters, also pointed out that NSF has only found $60 million for the next-generation system, and has (as of November 2017) cut the number of future track 2 systems to one. “I hope that DOE can convince Congress to not only appropriate the funds for these systems, but also for the other science agencies,” he said.

Adding further valuable insight into the United States’ strategy to field next-generation leadership-class supercomputers especially with regard to the “commercial viability” precept is NNSA Chief Scientist Dimitri Kusnezov. Interviewed by the Supercomputing Frontiers Europe 2018 conference in Warsaw, Poland, last month (link to video), Kusnezov characterized DOE and NNSA’s $258 million funding of the PathFoward program as “an investment with the private sector to buy down risk in next-generation technologies.”

“We would love to simply buy commercial,” he said. “It would be more cost-effective for us. We’d run in the cloud if that was the answer for us, if that was the most cost-effective way, because it’s not about the computer, it’s about the outcomes. The $250 million [spent on PathForward] was just a piece of ongoing and much larger investments we are making to try and steer, on the sides, vendor roadmaps. We have a sense where companies are going. They share with us their technology investments, and we ask them if there are things we can build on those to help modify it so they can be more broadly serviceable to large scalable architectures.

“$250 million dollars is not a lot of money in the computer world. A billion dollars is not a lot of money in the computer world, so you have to have measured expectations on what you think you can actually impact. We look at impacting the high-end next-generation roadmaps of companies where we can, to have the best output. The best outcome for us is we invest in modifications, lower-power processors, memory closer to the processor, AI-injected into the CPUs in some way, and, in the best case, it becomes commercial, and there’s a market for it, a global market ideally because then the price point comes down and when we build something there, it’s more cost-effective for us. We’re trying to avoid buying special-purpose, single-use systems because they’re too expensive and it doesn’t make a lot of sense. If we can piggyback on where companies want to go by having a sense of what might ultimately have market value for them, we leverage a lot of their R&D and production for our value as well.

“This investment we are doing buys down risk. If other people did it for us that would even be better. If they felt the urgency and invested in the areas we care about, we’d be really happy. So we fill in the gaps where we can. …But ultimately it’s not about the computer, it’s really about the purpose…the problems you are solving and do they make a difference.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TIOBE Index: Python Reaches Another All-Time High

June 17, 2019

TIOBE has released its June 2019 Index, and Python has reached another all-time high. TIOBE, which stands for “the importance of being earnest,” was founded in 2000. Its Programming Community Index – which is u Read more…

By Oliver Peckham

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This