US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

By Tiffany Trader

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with the release of the much-anticipated CORAL-2 request for proposals (RFP). Although funding is not yet secured, the anticipated budget range for each system is significant: $400 million to $600 million per machine including associated non-recurring engineering (NRE).

CORAL of course refers to the joint effort to procure next-generation supercomputers for Department of Energy’s National Laboratories at Oak Ridge, Argonne, and Livermore. The fruits of the original CORAL RFP include Summit and Sierra, ~200 petaflops systems being built by IBM in partnership with Nvidia and Mellanox for Oak Ridge and Livermore, respectively, and “A21,” the retooled Aurora contract with prime Intel (and partner Cray), destined for Argonne in 2021 and slated to be the United States’ first exascale machine.

The heavyweight supercomputers are required to meet the mission needs of the Advanced Scientific Computing Research (ASCR) Program within the DOE’s Office of Science and the Advanced Simulation and Computing (ASC) Program within the National Nuclear Security Administration.

The CORAL-2 collaboration specifically seeks to fund non-recurring engineering and up to three exascale-class systems: one at Oak Ridge, one at Livermore and a potential third system at Argonne if it chooses to make an award under the RFP and if funding is available. The Exascale Computing Project (ECP), a joint DOE-NNSA effort, has been organizing and leading R&D in the areas of the software stack, applications, and hardware to ensure “capable,” i.e., productively usable, exascale machines that can solve science problems 50x faster (or more complex) over today’s ~20-petaflops DOE systems (i.e., Sequoia and Titan). In terms of peak Linpack, 1.3 exaflops is the “desirable” target set by the DOE.

Like the original CORAL program, which kicked off in 2012, CORAL-2 has a mandate to field architecturally diverse machines in a way that manages risk during a period of rapid technological evolution. “Regardless of which system or systems are being discussed, the systems residing at or planned to reside at ORNL and ANL must be diverse from one another,” notes the CORAL-2 RFP cover letter [PDF]. Sharpening the point, that means the Oak Ridge system must be distinct from A21 and from a potential CORAL-2 machine at Argonne. It is conceivable, then, that this RFP may result in one, two or three different architectures, depending of course on the selections made by the labs and whether Argonne’s CORAL-2 machine comes to fruition.

“Diversity,” according to the RFP documents, “will be evaluated by how much the proposed system(s) promotes a competition of ideas and technologies; how much the proposed system(s) reduces risk that may be caused by delays or failure of a particular technology or shifts in vendor business focus, staff, or financial health; and how much the proposed system(s) diversity promotes a rich and healthy HPC ecosystem.”

Here is a listing of current and future CORAL machines:

Proposals for CORAL-2 are due in May with bidders to be selected later this year. Acquisition contracts are anticipated for 2019.

If Argonne takes delivery of A21 in 2021 and deploys an additional machine (or upgrade) in the third quarter of 2022, it would be fielding two exascale machines/builds in less than two years.

“Whether CORAL-2 winds up being two systems or three may come down to funding, which is ‘expected’ at this point, but not committed,” commented HPC veteran and market watcher Addison Snell, CEO of Intersect360 Research. “If ANL does not fund an exascale system as part of CORAL-2, I would nevertheless expect an exascale system there in a similar timeframe, just possibly funded separately.”

Several HPC community leaders we spoke with shared more pointed speculation on what the overture for a second exascale machine at Argonne so soon on the heels of A21 may indicate, insofar as there may be doubt about whether Intel’s “novel architecture” will satisfy the full scope of DOE’s needs. Given the close timing and the reality of lengthy procurement cycles, the decision on a follow-on will have to be made without the benefit of experience with A21.

Argonne’s Associate Laboratory Director for Computing, Environment and Life Sciences Rick Stevens, commenting for this piece, underscored the importance of technology diversity and shined a light on Argonne’s thinking. “We are very interested in getting as broad range of responses as possible to consider for our planning. We would love to have multiple choices to consider for the DOE landscape including exciting options for potential upgrades to Aurora,” he said.

If Intel, working with Cray, is able to fulfill the requirements for a 1-exaflops A21 machine in 2021, the pair may be in a favorable position to fulfill the more rigorous “capable exascale” requirements outlined by ECP and CORAL-2.

The overall bidding pool for CORAL-2 is likely to include IBM, Intel, Cray and Hewlett Packard Enterprise (HPE); upstart system-maker Nvidia may also have a hand to play. HPE could come in with a GPU-based machine or an implementation of its memory-centric architecture, known as The Machine. In IBM’s court, the successor architectures to Power9 are no doubt being looked at as candidates.

And while it’s always fun dishing over the sexy processing elements (with flavors from Intel, Nvidia, AMD and IBM on the tasting menu), Snell pointed out it is perhaps more interesting to prospect the interconnect topologies in the field. “Will we be looking at systems based on an upcoming version of a current technology, such as InfiniBand or OmniPath, or a future technology like Gen-Z, or something else proprietary?” he pondered.

Stevens weighed in on the many technological challenges still at hand, ranging from memory capacity, power consumption, and systems balance, but he noted that, fortunately, the DOE has been investing in many of these issues for many years, through the PathForward program and its predecessors, created to foster the technology pipeline needed for extreme-scale computing. It’s no accident or coincidence that we’ve already run through all the names in the current “Forward” program: AMD, Cray, HPE, IBM, Intel, and Nvidia.

“Hopefully the vendors will have some good options for us to consider,” said Stevens, adding that Argonne is seeking a broad set of responses from as many vendors as possible. “This RFP is really about opening up the aperture to new architectural concepts and to enable new partnerships in the vendor landscape. I think it’s particularly important to notice that we are interested in systems that can support the integration of simulation, data and machine learning. This is reflected in both the technology specifications as well as the benchmarks outlined in the RFP.”

Other community members also shared their reactions.

“It is good to see a commitment to high-end computing by DOE, though I note that the funding has not yet been secured,” said Bill Gropp, director of the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (home to the roughly 13-petaflops Cray “Blue Waters” supercomputer). “What is needed is a holistic approach to HEC; this addresses the next+1 generation of systems but not work on applications or algorithms.”

“What stands out [about the CORAL-2 RFP] is that it doesn’t take advantage of the diversity of systems to encourage specialization in the hardware to different data structure/algorithm choices,” Gropp added. “Once you decide to acquire several systems, you can consider specialization. Frankly, for example, GPU-based systems are specialized; they run some important algorithms very well, but are less effective at others. Rather than deny that, make it into a strength. There are hints of this in the way the different classes of benchmarks are described and the priorities placed on them [see page 23 of the RFP’s Proposal Evaluation and Proposal Preparation Instructions], but it could be much more explicit.

“Also, this line on page 23 stands out: “The technology must have potential commercial viability.” I understand the reasoning behind this, but it is an additional constraint that may limit the innovation that is possible. In any case, this is an indirect requirement. DOE is looking for viable technologies that it can support at reasonable cost. But this misses the point that using commodity (which is how commercial viability is often interpreted) technology has its own costs, in the part of the environment that I mentioned above and that is not covered by this RFP.”

Gropp, who is awaiting the results of the NSF Track 1 RFP that will award the follow-on to Blue Waters, also pointed out that NSF has only found $60 million for the next-generation system, and has (as of November 2017) cut the number of future track 2 systems to one. “I hope that DOE can convince Congress to not only appropriate the funds for these systems, but also for the other science agencies,” he said.

Adding further valuable insight into the United States’ strategy to field next-generation leadership-class supercomputers especially with regard to the “commercial viability” precept is NNSA Chief Scientist Dimitri Kusnezov. Interviewed by the Supercomputing Frontiers Europe 2018 conference in Warsaw, Poland, last month (link to video), Kusnezov characterized DOE and NNSA’s $258 million funding of the PathFoward program as “an investment with the private sector to buy down risk in next-generation technologies.”

“We would love to simply buy commercial,” he said. “It would be more cost-effective for us. We’d run in the cloud if that was the answer for us, if that was the most cost-effective way, because it’s not about the computer, it’s about the outcomes. The $250 million [spent on PathForward] was just a piece of ongoing and much larger investments we are making to try and steer, on the sides, vendor roadmaps. We have a sense where companies are going. They share with us their technology investments, and we ask them if there are things we can build on those to help modify it so they can be more broadly serviceable to large scalable architectures.

“$250 million dollars is not a lot of money in the computer world. A billion dollars is not a lot of money in the computer world, so you have to have measured expectations on what you think you can actually impact. We look at impacting the high-end next-generation roadmaps of companies where we can, to have the best output. The best outcome for us is we invest in modifications, lower-power processors, memory closer to the processor, AI-injected into the CPUs in some way, and, in the best case, it becomes commercial, and there’s a market for it, a global market ideally because then the price point comes down and when we build something there, it’s more cost-effective for us. We’re trying to avoid buying special-purpose, single-use systems because they’re too expensive and it doesn’t make a lot of sense. If we can piggyback on where companies want to go by having a sense of what might ultimately have market value for them, we leverage a lot of their R&D and production for our value as well.

“This investment we are doing buys down risk. If other people did it for us that would even be better. If they felt the urgency and invested in the areas we care about, we’d be really happy. So we fill in the gaps where we can. …But ultimately it’s not about the computer, it’s really about the purpose…the problems you are solving and do they make a difference.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This