US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

By Tiffany Trader

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with the release of the much-anticipated CORAL-2 request for proposals (RFP). Although funding is not yet secured, the anticipated budget range for each system is significant: $400 million to $600 million per machine including associated non-recurring engineering (NRE).

CORAL of course refers to the joint effort to procure next-generation supercomputers for Department of Energy’s National Laboratories at Oak Ridge, Argonne, and Livermore. The fruits of the original CORAL RFP include Summit and Sierra, ~200 petaflops systems being built by IBM in partnership with Nvidia and Mellanox for Oak Ridge and Livermore, respectively, and “A21,” the retooled Aurora contract with prime Intel (and partner Cray), destined for Argonne in 2021 and slated to be the United States’ first exascale machine.

The heavyweight supercomputers are required to meet the mission needs of the Advanced Scientific Computing Research (ASCR) Program within the DOE’s Office of Science and the Advanced Simulation and Computing (ASC) Program within the National Nuclear Security Administration.

The CORAL-2 collaboration specifically seeks to fund non-recurring engineering and up to three exascale-class systems: one at Oak Ridge, one at Livermore and a potential third system at Argonne if it chooses to make an award under the RFP and if funding is available. The Exascale Computing Project (ECP), a joint DOE-NNSA effort, has been organizing and leading R&D in the areas of the software stack, applications, and hardware to ensure “capable,” i.e., productively usable, exascale machines that can solve science problems 50x faster (or more complex) over today’s ~20-petaflops DOE systems (i.e., Sequoia and Titan). In terms of peak Linpack, 1.3 exaflops is the “desirable” target set by the DOE.

Like the original CORAL program, which kicked off in 2012, CORAL-2 has a mandate to field architecturally diverse machines in a way that manages risk during a period of rapid technological evolution. “Regardless of which system or systems are being discussed, the systems residing at or planned to reside at ORNL and ANL must be diverse from one another,” notes the CORAL-2 RFP cover letter [PDF]. Sharpening the point, that means the Oak Ridge system must be distinct from A21 and from a potential CORAL-2 machine at Argonne. It is conceivable, then, that this RFP may result in one, two or three different architectures, depending of course on the selections made by the labs and whether Argonne’s CORAL-2 machine comes to fruition.

“Diversity,” according to the RFP documents, “will be evaluated by how much the proposed system(s) promotes a competition of ideas and technologies; how much the proposed system(s) reduces risk that may be caused by delays or failure of a particular technology or shifts in vendor business focus, staff, or financial health; and how much the proposed system(s) diversity promotes a rich and healthy HPC ecosystem.”

Here is a listing of current and future CORAL machines:

Proposals for CORAL-2 are due in May with bidders to be selected later this year. Acquisition contracts are anticipated for 2019.

If Argonne takes delivery of A21 in 2021 and deploys an additional machine (or upgrade) in the third quarter of 2022, it would be fielding two exascale machines/builds in less than two years.

“Whether CORAL-2 winds up being two systems or three may come down to funding, which is ‘expected’ at this point, but not committed,” commented HPC veteran and market watcher Addison Snell, CEO of Intersect360 Research. “If ANL does not fund an exascale system as part of CORAL-2, I would nevertheless expect an exascale system there in a similar timeframe, just possibly funded separately.”

Several HPC community leaders we spoke with shared more pointed speculation on what the overture for a second exascale machine at Argonne so soon on the heels of A21 may indicate, insofar as there may be doubt about whether Intel’s “novel architecture” will satisfy the full scope of DOE’s needs. Given the close timing and the reality of lengthy procurement cycles, the decision on a follow-on will have to be made without the benefit of experience with A21.

Argonne’s Associate Laboratory Director for Computing, Environment and Life Sciences Rick Stevens, commenting for this piece, underscored the importance of technology diversity and shined a light on Argonne’s thinking. “We are very interested in getting as broad range of responses as possible to consider for our planning. We would love to have multiple choices to consider for the DOE landscape including exciting options for potential upgrades to Aurora,” he said.

If Intel, working with Cray, is able to fulfill the requirements for a 1-exaflops A21 machine in 2021, the pair may be in a favorable position to fulfill the more rigorous “capable exascale” requirements outlined by ECP and CORAL-2.

The overall bidding pool for CORAL-2 is likely to include IBM, Intel, Cray and Hewlett Packard Enterprise (HPE); upstart system-maker Nvidia may also have a hand to play. HPE could come in with a GPU-based machine or an implementation of its memory-centric architecture, known as The Machine. In IBM’s court, the successor architectures to Power9 are no doubt being looked at as candidates.

And while it’s always fun dishing over the sexy processing elements (with flavors from Intel, Nvidia, AMD and IBM on the tasting menu), Snell pointed out it is perhaps more interesting to prospect the interconnect topologies in the field. “Will we be looking at systems based on an upcoming version of a current technology, such as InfiniBand or OmniPath, or a future technology like Gen-Z, or something else proprietary?” he pondered.

Stevens weighed in on the many technological challenges still at hand, ranging from memory capacity, power consumption, and systems balance, but he noted that, fortunately, the DOE has been investing in many of these issues for many years, through the PathForward program and its predecessors, created to foster the technology pipeline needed for extreme-scale computing. It’s no accident or coincidence that we’ve already run through all the names in the current “Forward” program: AMD, Cray, HPE, IBM, Intel, and Nvidia.

“Hopefully the vendors will have some good options for us to consider,” said Stevens, adding that Argonne is seeking a broad set of responses from as many vendors as possible. “This RFP is really about opening up the aperture to new architectural concepts and to enable new partnerships in the vendor landscape. I think it’s particularly important to notice that we are interested in systems that can support the integration of simulation, data and machine learning. This is reflected in both the technology specifications as well as the benchmarks outlined in the RFP.”

Other community members also shared their reactions.

“It is good to see a commitment to high-end computing by DOE, though I note that the funding has not yet been secured,” said Bill Gropp, director of the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (home to the roughly 13-petaflops Cray “Blue Waters” supercomputer). “What is needed is a holistic approach to HEC; this addresses the next+1 generation of systems but not work on applications or algorithms.”

“What stands out [about the CORAL-2 RFP] is that it doesn’t take advantage of the diversity of systems to encourage specialization in the hardware to different data structure/algorithm choices,” Gropp added. “Once you decide to acquire several systems, you can consider specialization. Frankly, for example, GPU-based systems are specialized; they run some important algorithms very well, but are less effective at others. Rather than deny that, make it into a strength. There are hints of this in the way the different classes of benchmarks are described and the priorities placed on them [see page 23 of the RFP’s Proposal Evaluation and Proposal Preparation Instructions], but it could be much more explicit.

“Also, this line on page 23 stands out: “The technology must have potential commercial viability.” I understand the reasoning behind this, but it is an additional constraint that may limit the innovation that is possible. In any case, this is an indirect requirement. DOE is looking for viable technologies that it can support at reasonable cost. But this misses the point that using commodity (which is how commercial viability is often interpreted) technology has its own costs, in the part of the environment that I mentioned above and that is not covered by this RFP.”

Gropp, who is awaiting the results of the NSF Track 1 RFP that will award the follow-on to Blue Waters, also pointed out that NSF has only found $60 million for the next-generation system, and has (as of November 2017) cut the number of future track 2 systems to one. “I hope that DOE can convince Congress to not only appropriate the funds for these systems, but also for the other science agencies,” he said.

Adding further valuable insight into the United States’ strategy to field next-generation leadership-class supercomputers especially with regard to the “commercial viability” precept is NNSA Chief Scientist Dimitri Kusnezov. Interviewed by the Supercomputing Frontiers Europe 2018 conference in Warsaw, Poland, last month (link to video), Kusnezov characterized DOE and NNSA’s $258 million funding of the PathFoward program as “an investment with the private sector to buy down risk in next-generation technologies.”

“We would love to simply buy commercial,” he said. “It would be more cost-effective for us. We’d run in the cloud if that was the answer for us, if that was the most cost-effective way, because it’s not about the computer, it’s about the outcomes. The $250 million [spent on PathForward] was just a piece of ongoing and much larger investments we are making to try and steer, on the sides, vendor roadmaps. We have a sense where companies are going. They share with us their technology investments, and we ask them if there are things we can build on those to help modify it so they can be more broadly serviceable to large scalable architectures.

“$250 million dollars is not a lot of money in the computer world. A billion dollars is not a lot of money in the computer world, so you have to have measured expectations on what you think you can actually impact. We look at impacting the high-end next-generation roadmaps of companies where we can, to have the best output. The best outcome for us is we invest in modifications, lower-power processors, memory closer to the processor, AI-injected into the CPUs in some way, and, in the best case, it becomes commercial, and there’s a market for it, a global market ideally because then the price point comes down and when we build something there, it’s more cost-effective for us. We’re trying to avoid buying special-purpose, single-use systems because they’re too expensive and it doesn’t make a lot of sense. If we can piggyback on where companies want to go by having a sense of what might ultimately have market value for them, we leverage a lot of their R&D and production for our value as well.

“This investment we are doing buys down risk. If other people did it for us that would even be better. If they felt the urgency and invested in the areas we care about, we’d be really happy. So we fill in the gaps where we can. …But ultimately it’s not about the computer, it’s really about the purpose…the problems you are solving and do they make a difference.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire