IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

By John Russell

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler support including a vote of confidence from Google, firing up soon of the Summit supercomputer at Oak Ridge Leadership Computing Facility – Big Blue turned much of its attention to software portability and availability at the OpenPOWER Summit 2018, held last month in Las Vegas.

Chris Sullivan, assistant director for biocomputing, Center for Genome Research and Biocomputing (CGRB), Oregon State University, delivered the message in his keynote, Porting from x86 to OpenPOWER made easy. CGRB, though life sciences centric, serves the broader Oregon State research community and already had 4,000 tools and applications on its standard research x86 cluster before taking the Power plunge. “As we brought Power on we realized we need to do the same thing so we began this process with an undergraduate who I paid $10/hr. This is how easy it is to get this stuff to work. He sat for a month or two compiling the tools and he came up with about 2,000 programs in about two months,” said Sullivan with a bit of dramatic flair.

Readying the software ecosystem is an important step for IBM/OpenPOWER. The big change, of course, was IBM’s decision to expand support for Linux and the little endian format, first on Power8 and then on Power9. IBM had clung to support of big endian format even as Linux and little endian became the preferred approach in science computing. Sullivan said pointedly, “We really were not interested in talking about Power because of the fact that so many of the software packages were written in the context of little endian. [Support for little endian] is the fundamental reason why everybody would start moving to the Power platform.”

Wrangling over ‘endianness’ has been an interesting history. By way of background, this 2015 post[i] by Ron Gordon, a longtime IBMer who is now with consultant Mainline Information System, provides a snapshot of IBM’s thinking back then on little endian support and on targeting of Intel.

“Big Endian and Little Endian are data formats that define data in binary, with the most significant bits in the high order (Big Endian) or low order (Little Endian). Big Endian was the only data format for many years, supported by all systems and architectures. Then, x86 was “invented.” For some reason, they reversed the data bit order, and then we had Little Endian. As it turns out, only x86 is Little Endian but since x86 has the predominate market share, it is the most pervasive, at this time…

“Endianness only pertains to data and not instructions. Compilers of code reflect the Endianness of the application with LE (Little Endian) being the default for x86 compiles, and all others defaulting to BE (Big Endian). Power8 is an exception, in that compilers like XLC, GCC can accept a “compile to” definition of PPC or PPCLE. This would set the Endianness to BE or LE respectively. Now, when you boot a Linux distribution, the OS has to be LE to run LE compiled applications or BE to run BE compiled applications. In Power8, everything actually runs in BE mode, and when data is loaded or stored to memory, an LE application has its data bit structure “flipped” in the registers…so you are treating LE data correctly and transparently. Therefore, Power8 is bi-Endian. Power7 can only run in BE mode.”

IBM has since been working steadily and successfully to attract Linux distributors’ support.

Last November Red Hat announced of Red Hat Enterprise Linux 7.4 support for little endian on Power9: “…In recent months, we have seen interest from customers for solutions based on hardware designs that use IBM Power Little Endian (ppc64le) architecture. Several interesting designs focused on artificial intelligence, machine learning, and advanced analytics are being developed by OpenPOWER members using advanced system interconnect technologies and graphics processing unit (GPU)-aided computing. Because this architecture and the associated ecosystem is still evolving, we plan to continue our work with IBM and the OpenPOWER ecosystem to enable new and refreshed hardware.”

One early adopter of RHEL 7.4 for Power is the Summit supercomputer being installed at Oak Ridge; it’s expected to run five to 10 times faster than its predecessor (Titan). CGRB is a “big CentOS shop” according to Sullivan and also runs Ubuntu.

The end goal, of course, is to attract users such as Sullivan who want easy access to the sea of Linux applications and who also want to take advantage of Power8/9’s high performance, particularly its high-speed interconnect (NVlink, CAPI/OpenCAPI, PCIe 4.0). There are still a few rough spots in Power-Linux compatibility but they are exceptions said Sullivan who pointed a finger at Intel (an intermittent target throughout the OpenPOWER Summit):

  • “There are some problems. We noticed some of the x86 stuff had Intel inserted in the IDEs sse, sse2 memory stuff and the end users and developers had no idea that they were actually putting dependencies that were Intel specific into their code. We’ve been able to communicate to some of those groups and show them the impact because they won’t be able to take advantage of new technologies and they are going through recoding it and actually bringing their code in compliance with working across multiple architectures.”

Aaron Gardner, director of technology for BioTeam research computing consultancy, agreed IBM’s embrace of little endian has been an important step for Power.

“These days the vast majority of Linux on Power is little endian. The reason for this is the impact of not having to refactor code for big endian, especially en masse, makes porting fairly straightforward. For example Google is famous for saying before Power8 they were “struggling” to get their tools going on Power but with the little endian support everything was working within days,” said Gardner. “The thing to note around optimization is that Intel CPUs and compilers have had a heavy influence and presence in recent years. This has produced compiler optimizations and sometimes hand coded assembly routines in programs for memory access that are designed around little endian byte ordering—running Power little endian makes using this code tenable.”

“Regarding general portability, the path between Intel and AMD is fairly frictionless due to shared AMD64 instructions. I agree gcc and clang/llvm are common baselines now across Power, Intel, and AMD—and for most things it should not be difficult to get [them] working especially when autoconf, etc. are employed. For deeper optimizations there are always the Intel compilers as well as the IBM XL compilers. AMD’s free AOCC compiler is based on clang/llvm and until recently has offered little benefit over gcc or upstream clang—though it may offer more significant benefits in the future. IBM XL compilers use the same options as gcc, have improved their overall gcc compatibility, and is fronted by clang as well. This means in many cases these optimized compilers can be used to good effect with minimal rework. I would note that some moves, for example an Intel Fortran compiler optimized program being ported to Power and compiled with IBM’s XL Fortran compiler, will still be costly, but in general over the last 3-5 years the ecosystem has begun to play together much more nicely.”

Interestingly, said Gardner, the challenge moving forward is that many have moved away from compiling things themselves, and rely on third party or crowdsourced repositories. As examples of this trend, Gardner noted supercomputing centers moving to deploying modularized HPC applications using community packages through Conda, Spack, EasyBuild, etc. as opposed to building and optimizing everything themselves. “Indeed efforts to bring Power alongside Intel and AMD architectures in these community repositories is the next step to close the portability gap that remains,” said Gardner.

CGRB is an interesting proof point for IBM. Cost and performance are both drivers according to Sullivan. CGRB is a large heterogeneous environment, that runs roughly 20,000 jobs a day, has nearly 5,000 processors, more than four petabytes of useable redundant storage, and generates 4-9 terabytes of data per day from different groups. Data mining and data processing are among CGRB’s priorities.

“We have lots of machines with greater than a terabyte of RAM because that helps change the scope [of what we can do]. We have six Power8 systems and we are continuing to buy them because they’ve allowed us to increase the scope of data we include in analysis, both in terms of the number of threads and in terms of moving data across the bus,” said Sullivan. “The bus speeds are really what changes and transforms our ability to work. I have groups that go out and mine data from the oceans and generate 80 TB of data a week [and] I have a quarter petabyte of data or so coming from owl sounds in the forest. We have to try to reduce processing times from months to weeks otherwise. We also need to run multiple tools at the same time.”

Sullivan didn’t identify the interface researchers use to submit job but said the system has been architected so that “all the software is able to identify the architecture” and provide the correct environment variables. Users “can blindly submit jobs,” said Sullivan, adding higher throughput, is what drives lower cost and that it has also started researchers thinking how to better take advantage of the platform. Link to Sullivan’s keynote is below.

Link to Sullivan video: https://youtu.be/-hq8utGE-oU

[i]https://www.mainline.com/linux-on-power-to-be-or-not-to-be-why-should-i-care/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This