University of Stuttgart Advances MegaMol Cross-Platform Visualization Framework

By Rob Johnson

April 16, 2018

The MegaMol team at the Visualization Research Center of the University of Stuttgart (VISUS) works each day to empower discoveries in fields like biochemistry, thermodynamics, medicine, and physics. Initially conceived by researcher Sebastian Grottel, the particle visualization framework MegaMol has been in development for over a decade with support from the Computer Graphics and Visualization Group of the TU Dresden and other colleagues. The framework enables imaging and exploration of the tiny-scale complexities of molecular dynamics in unprecedented three-dimensional detail. MegaMol supports rapid prototyping using powerful desktop systems utilizing both Microsoft Windows and Linux.

As science progresses, major research projects today must accommodate increasingly-challenging imaging workloads. With this evolution comes the need to render detailed visuals, often beyond those which a desktop system’s processing power can handle. Big data management and robust HPC systems present an additional opportunity for scientific breakthroughs. By furthering MegaMol’s existing GPU-centric framework with OSPRay’s ability to tap the speed and built-in capabilities of the latest Intel Xeon CPUs, increasingly-complex visualization middleware will drive science forward.

Jim Jeffers, senior director and senior principal engineer of SDVis engineering at Intel put this in context, “GPUs are very good rendering four to eight-gigabyte rasterized workloads and provide value for smaller data sets needing moderate fidelity on powerful workstations. However, many of today’s scientific endeavors using HPC, like molecular dynamics, fall into the Big Data category, requiring the handling of terabytes of information that require high fidelity rendering.” OSPRay addresses this need for grander scale.

More than meets the eye

In everyday life, many of us experience rendering technologies at work when watching films. Science fiction movies combine actual people with photorealistic computer rendered fantasy creatures using ray traced rendering that inherently models lighting. Biochemists require visualization to meet many different requirements when rendering objects on a molecular scale. Ray traced global lighting effects like ambient occlusion and shadowing can prove helpful when trying to understand the spatial structures in molecular dynamics simulations. However, in biochemistry “realistic” object rendering is not the priority for visualization efforts, but the ability to interact with the data is crucial. Especially in large-scale simulations, the sheer amount of detail which hundreds of millions of particles offer can overwhelm the human observer. Instead, scientists depend on visualization to make their datasets more comprehensible by offering greater clarity, simplicity, and abstraction. Doing that requires novel visualization metaphors and massive scalability from an HPC system and the software running on it.

Stuttgart’s recent efforts seek to leverage both MegaMol and OSPRay visualization frameworks to combine their prowess. MegaMol’s legacy design leverages a GPU (Graphical Processing Unit) for its interactive, cross-platform visualization framework. While innovative in many ways, MegaMol faces some limitations. The primary challenge resides in its reliance on GPUs. Years ago, when CPUs offered lesser compute performance, GPUs sped workloads by offloading challenging visualization tasks from constrained CPUs. However, today’s advanced CPUs are not bound by their predecessors’ limitations since they have built-in capability for ray-tracing algorithm parallelism. For this reason, OSPRay offers a complementary visualization framework for MegaMol.

Since OSPRay maximizes vectorization and ray-tracing capability ‘in-situ’ on the CPU, it can leverage the superior memory capacity, and advanced vector extensions (including Intel AVX-512) to accelerate workloads on Intel Xeon Scalable and Intel Xeon Phi processors. As a result, contemporary ray-tracing takes better advantage of many-node clusters making SDVis exascale-capable. Jeffers describes an additional benefit of Intel AVX integration on the CPU. “Visualization is not just about CPU clock rate. Intel AVX-512 is much more efficient because it enables parallel ‘multi-ray’ capability. Instead of evaluating rays one at a time, the vector processing can package multiple rays together for simultaneous processing. Through this ‘single instruction, multiple data’ capability, many efficiencies can be gained.”

MegaMol team colleague Tobias Rau has undertaken the challenging task of integrating their framework and OSPRay to reap the benefits of each’s inherent strength. OSPRay offers significant performance and scale improvements, while MegaMol remains highly effective at data integration, visual abstraction, interactive exploration, and analysis. Using MegaMol for UX, with OSPRay underlying it, the team maximizes both frameworks.

Beyond the latest hardware and rendering engines, other advancements in visualization provided by OSPRay’s use of the ever-improving Embree ray tracing kernel, available under the Apache 2.0 license, will help drive more detailed rendering.

Grand visions

In the future, the team behind MegaMol plans to forge ahead with additional optimization improvements, and other efforts to enhance the ray tracing framework. With support from Intel’s Parallel Computing Center, VISUS plans further integration of SDVis into MegaMol. The effort will enable additional scalability with more massive data sets. MegaMol’s 1.3 release to be posted on GitHub includes OSPRay support for volume and particle rendering. Additionally, OSPRay geometry for Solvent Excluded Surfaces will empower biochemists seeking a deeper understanding of proteins and other macromolecules.

With these and more improvements on the way, VISUS plans to enable visualization of experiments like a simulation of human muscle fibers. Interfacing MegaMol and simulations, plus the ability to internet-stream resulting observations, will facilitate research not possible just a few years ago. By advancing and integrating visualization frameworks, efforts among the MegaMol team and many others around the world will undoubtedly make a substantial impact in life sciences.

About the Author

Rob Johnson spent much of his professional career consulting for a Fortune 25 technology company. Currently, Rob owns Fine Tuning, LLC, a strategic marketing and communications consulting company based in Portland, Oregon. As a technology, audio, and gadget enthusiast his entire life, Rob also writes for TONEAudio Magazine, reviewing high-end home audio equipment.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This