University of Stuttgart Advances MegaMol Cross-Platform Visualization Framework

By Rob Johnson

April 16, 2018

The MegaMol team at the Visualization Research Center of the University of Stuttgart (VISUS) works each day to empower discoveries in fields like biochemistry, thermodynamics, medicine, and physics. Initially conceived by researcher Sebastian Grottel, the particle visualization framework MegaMol has been in development for over a decade with support from the Computer Graphics and Visualization Group of the TU Dresden and other colleagues. The framework enables imaging and exploration of the tiny-scale complexities of molecular dynamics in unprecedented three-dimensional detail. MegaMol supports rapid prototyping using powerful desktop systems utilizing both Microsoft Windows and Linux.

As science progresses, major research projects today must accommodate increasingly-challenging imaging workloads. With this evolution comes the need to render detailed visuals, often beyond those which a desktop system’s processing power can handle. Big data management and robust HPC systems present an additional opportunity for scientific breakthroughs. By furthering MegaMol’s existing GPU-centric framework with OSPRay’s ability to tap the speed and built-in capabilities of the latest Intel Xeon CPUs, increasingly-complex visualization middleware will drive science forward.

Jim Jeffers, senior director and senior principal engineer of SDVis engineering at Intel put this in context, “GPUs are very good rendering four to eight-gigabyte rasterized workloads and provide value for smaller data sets needing moderate fidelity on powerful workstations. However, many of today’s scientific endeavors using HPC, like molecular dynamics, fall into the Big Data category, requiring the handling of terabytes of information that require high fidelity rendering.” OSPRay addresses this need for grander scale.

More than meets the eye

In everyday life, many of us experience rendering technologies at work when watching films. Science fiction movies combine actual people with photorealistic computer rendered fantasy creatures using ray traced rendering that inherently models lighting. Biochemists require visualization to meet many different requirements when rendering objects on a molecular scale. Ray traced global lighting effects like ambient occlusion and shadowing can prove helpful when trying to understand the spatial structures in molecular dynamics simulations. However, in biochemistry “realistic” object rendering is not the priority for visualization efforts, but the ability to interact with the data is crucial. Especially in large-scale simulations, the sheer amount of detail which hundreds of millions of particles offer can overwhelm the human observer. Instead, scientists depend on visualization to make their datasets more comprehensible by offering greater clarity, simplicity, and abstraction. Doing that requires novel visualization metaphors and massive scalability from an HPC system and the software running on it.

Stuttgart’s recent efforts seek to leverage both MegaMol and OSPRay visualization frameworks to combine their prowess. MegaMol’s legacy design leverages a GPU (Graphical Processing Unit) for its interactive, cross-platform visualization framework. While innovative in many ways, MegaMol faces some limitations. The primary challenge resides in its reliance on GPUs. Years ago, when CPUs offered lesser compute performance, GPUs sped workloads by offloading challenging visualization tasks from constrained CPUs. However, today’s advanced CPUs are not bound by their predecessors’ limitations since they have built-in capability for ray-tracing algorithm parallelism. For this reason, OSPRay offers a complementary visualization framework for MegaMol.

Since OSPRay maximizes vectorization and ray-tracing capability ‘in-situ’ on the CPU, it can leverage the superior memory capacity, and advanced vector extensions (including Intel AVX-512) to accelerate workloads on Intel Xeon Scalable and Intel Xeon Phi processors. As a result, contemporary ray-tracing takes better advantage of many-node clusters making SDVis exascale-capable. Jeffers describes an additional benefit of Intel AVX integration on the CPU. “Visualization is not just about CPU clock rate. Intel AVX-512 is much more efficient because it enables parallel ‘multi-ray’ capability. Instead of evaluating rays one at a time, the vector processing can package multiple rays together for simultaneous processing. Through this ‘single instruction, multiple data’ capability, many efficiencies can be gained.”

MegaMol team colleague Tobias Rau has undertaken the challenging task of integrating their framework and OSPRay to reap the benefits of each’s inherent strength. OSPRay offers significant performance and scale improvements, while MegaMol remains highly effective at data integration, visual abstraction, interactive exploration, and analysis. Using MegaMol for UX, with OSPRay underlying it, the team maximizes both frameworks.

Beyond the latest hardware and rendering engines, other advancements in visualization provided by OSPRay’s use of the ever-improving Embree ray tracing kernel, available under the Apache 2.0 license, will help drive more detailed rendering.

Grand visions

In the future, the team behind MegaMol plans to forge ahead with additional optimization improvements, and other efforts to enhance the ray tracing framework. With support from Intel’s Parallel Computing Center, VISUS plans further integration of SDVis into MegaMol. The effort will enable additional scalability with more massive data sets. MegaMol’s 1.3 release to be posted on GitHub includes OSPRay support for volume and particle rendering. Additionally, OSPRay geometry for Solvent Excluded Surfaces will empower biochemists seeking a deeper understanding of proteins and other macromolecules.

With these and more improvements on the way, VISUS plans to enable visualization of experiments like a simulation of human muscle fibers. Interfacing MegaMol and simulations, plus the ability to internet-stream resulting observations, will facilitate research not possible just a few years ago. By advancing and integrating visualization frameworks, efforts among the MegaMol team and many others around the world will undoubtedly make a substantial impact in life sciences.

About the Author

Rob Johnson spent much of his professional career consulting for a Fortune 25 technology company. Currently, Rob owns Fine Tuning, LLC, a strategic marketing and communications consulting company based in Portland, Oregon. As a technology, audio, and gadget enthusiast his entire life, Rob also writes for TONEAudio Magazine, reviewing high-end home audio equipment.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This