University of Stuttgart Advances MegaMol Cross-Platform Visualization Framework

By Rob Johnson

April 16, 2018

The MegaMol team at the Visualization Research Center of the University of Stuttgart (VISUS) works each day to empower discoveries in fields like biochemistry, thermodynamics, medicine, and physics. Initially conceived by researcher Sebastian Grottel, the particle visualization framework MegaMol has been in development for over a decade with support from the Computer Graphics and Visualization Group of the TU Dresden and other colleagues. The framework enables imaging and exploration of the tiny-scale complexities of molecular dynamics in unprecedented three-dimensional detail. MegaMol supports rapid prototyping using powerful desktop systems utilizing both Microsoft Windows and Linux.

As science progresses, major research projects today must accommodate increasingly-challenging imaging workloads. With this evolution comes the need to render detailed visuals, often beyond those which a desktop system’s processing power can handle. Big data management and robust HPC systems present an additional opportunity for scientific breakthroughs. By furthering MegaMol’s existing GPU-centric framework with OSPRay’s ability to tap the speed and built-in capabilities of the latest Intel Xeon CPUs, increasingly-complex visualization middleware will drive science forward.

Jim Jeffers, senior director and senior principal engineer of SDVis engineering at Intel put this in context, “GPUs are very good rendering four to eight-gigabyte rasterized workloads and provide value for smaller data sets needing moderate fidelity on powerful workstations. However, many of today’s scientific endeavors using HPC, like molecular dynamics, fall into the Big Data category, requiring the handling of terabytes of information that require high fidelity rendering.” OSPRay addresses this need for grander scale.

More than meets the eye

In everyday life, many of us experience rendering technologies at work when watching films. Science fiction movies combine actual people with photorealistic computer rendered fantasy creatures using ray traced rendering that inherently models lighting. Biochemists require visualization to meet many different requirements when rendering objects on a molecular scale. Ray traced global lighting effects like ambient occlusion and shadowing can prove helpful when trying to understand the spatial structures in molecular dynamics simulations. However, in biochemistry “realistic” object rendering is not the priority for visualization efforts, but the ability to interact with the data is crucial. Especially in large-scale simulations, the sheer amount of detail which hundreds of millions of particles offer can overwhelm the human observer. Instead, scientists depend on visualization to make their datasets more comprehensible by offering greater clarity, simplicity, and abstraction. Doing that requires novel visualization metaphors and massive scalability from an HPC system and the software running on it.

Stuttgart’s recent efforts seek to leverage both MegaMol and OSPRay visualization frameworks to combine their prowess. MegaMol’s legacy design leverages a GPU (Graphical Processing Unit) for its interactive, cross-platform visualization framework. While innovative in many ways, MegaMol faces some limitations. The primary challenge resides in its reliance on GPUs. Years ago, when CPUs offered lesser compute performance, GPUs sped workloads by offloading challenging visualization tasks from constrained CPUs. However, today’s advanced CPUs are not bound by their predecessors’ limitations since they have built-in capability for ray-tracing algorithm parallelism. For this reason, OSPRay offers a complementary visualization framework for MegaMol.

Since OSPRay maximizes vectorization and ray-tracing capability ‘in-situ’ on the CPU, it can leverage the superior memory capacity, and advanced vector extensions (including Intel AVX-512) to accelerate workloads on Intel Xeon Scalable and Intel Xeon Phi processors. As a result, contemporary ray-tracing takes better advantage of many-node clusters making SDVis exascale-capable. Jeffers describes an additional benefit of Intel AVX integration on the CPU. “Visualization is not just about CPU clock rate. Intel AVX-512 is much more efficient because it enables parallel ‘multi-ray’ capability. Instead of evaluating rays one at a time, the vector processing can package multiple rays together for simultaneous processing. Through this ‘single instruction, multiple data’ capability, many efficiencies can be gained.”

MegaMol team colleague Tobias Rau has undertaken the challenging task of integrating their framework and OSPRay to reap the benefits of each’s inherent strength. OSPRay offers significant performance and scale improvements, while MegaMol remains highly effective at data integration, visual abstraction, interactive exploration, and analysis. Using MegaMol for UX, with OSPRay underlying it, the team maximizes both frameworks.

Beyond the latest hardware and rendering engines, other advancements in visualization provided by OSPRay’s use of the ever-improving Embree ray tracing kernel, available under the Apache 2.0 license, will help drive more detailed rendering.

Grand visions

In the future, the team behind MegaMol plans to forge ahead with additional optimization improvements, and other efforts to enhance the ray tracing framework. With support from Intel’s Parallel Computing Center, VISUS plans further integration of SDVis into MegaMol. The effort will enable additional scalability with more massive data sets. MegaMol’s 1.3 release to be posted on GitHub includes OSPRay support for volume and particle rendering. Additionally, OSPRay geometry for Solvent Excluded Surfaces will empower biochemists seeking a deeper understanding of proteins and other macromolecules.

With these and more improvements on the way, VISUS plans to enable visualization of experiments like a simulation of human muscle fibers. Interfacing MegaMol and simulations, plus the ability to internet-stream resulting observations, will facilitate research not possible just a few years ago. By advancing and integrating visualization frameworks, efforts among the MegaMol team and many others around the world will undoubtedly make a substantial impact in life sciences.

About the Author

Rob Johnson spent much of his professional career consulting for a Fortune 25 technology company. Currently, Rob owns Fine Tuning, LLC, a strategic marketing and communications consulting company based in Portland, Oregon. As a technology, audio, and gadget enthusiast his entire life, Rob also writes for TONEAudio Magazine, reviewing high-end home audio equipment.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Energy Exascale Earth System Model Version 2 Promises Twice the Speed

October 18, 2021

The Energy Exascale Earth System Model (E3SM) is an ongoing Department of Energy (DOE) earth system modeling, simulation and prediction project aiming to “assert and maintain an international scientific leadership posi Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire