Hennessy & Patterson: A New Golden Age for Computer Architecture

By Staff

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles.

The celebrated computer architects have penned this short article (published on the ISCA website), previewing their talk.

“A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, and Agile Chip Development”

by John L. Hennessy and David A. Patterson

In the 1980s, Mead and Conway1 democratized chip design and high-level language programming surpassed assembly language programming, which made instruction set advances viable. Innovations like RISC, superscalar, multilevel caches, and speculation plus compiler advances (especially in register allocation) ushered in a Golden Age of computer architecture, when performance increased annually by 60%. In the later 1990s and 2000s, architectural innovation decreased, so performance came primarily from higher clock rates and larger caches. The ending of Dennard Scaling and Moore’s Law also slowed this path; single core performance improved only 3% last year! In addition to poor performance gains of modern microprocessors, Spectre recently demonstrated timing attacks that leak information at high rates2.

We’re on the cusp of another Golden Age that will significantly improve cost, performance, energy, and security. These architecture challenges are even harder given that we’ve lost the exponentially increasing resources provided by Dennard scaling and Moore’s law. We’ve identified areas that are critical to this new age:

1) Hardware/Software Co-Design for High-Level and Domain-Specific Languages

Advanced programming languages like Python and domain-specific languages like TensorFlow have dramatically improved programmer productivity by increasing software reuse and by raising the level of abstraction. Whereas compiler-architecture co-design delivered gains of about three in the 1980s for C compilers and RISC architectures, new advances could create compilers and domain-specific architectures3 (DSAs) that deliver tenfold or more jumps4 in this new Golden Age.

2) Enhancing Security

We’ve made tremendous gains in information technology (IT) in the past 40 years, but if security is a war, we’re losing it. Thus far, architects have been asked for little beyond page-level protection and supporting virtual machines. The very definition of computer architecture ignores timing, yet Spectre shows that attacks that can determine timing of operations can leak supposedly protected data. It’s time for architects to redefine computer architecture and treat security as a first class citizen to protect data from timing attacks, or at worst reduce information leaks to a trickle.

3) Free and Open Architectures and Open-Source Implementations

Progress on these issues likely will require changes to the instruction set architecture (ISA), which is problematic for proprietary ISAs. For tall challenges like these, we want all the best minds to work on them, not only the engineers who work for the ISA owners. Thus, a free and open ISA such as RISC-V can be a boon to researchers5 because:

  • Many people in many organizations can innovate simultaneously using RISC-V.
  • The ISA is designed for modularity and extensions.
  • It comes with a complete software stack, including compilers, operating systems, and debuggers, which are open source and thus also modifiable.
  • This modern ISA is designed to work for any application, from cloud-level servers down to mobile and IoT devices.
  • RISC-V is driven by a 100-member foundation6 that ensures its long-term stability and evolution.

Unlike the past, open ISAs are viable because many engineers for a wide range of products are designing SOCs by incorporating IP and because ARM has demonstrated that IP works for ISAs.

An open architecture also enables open-source processor designs for both FPGAs and real chips, so architects can innovate by modifying an existing RISC-V design and its software stack. While FPGAs run at perhaps only 100 MHz, that is fast enough to run trillions of instructions or to be deployed on the Internet to test a security feature against real attacks. Given the plasticity of FPGAs, the RISC-V ecosystem enables experimental investigations of novel features that can be deployed, evaluated, and iterated in days rather than in years. That vision requires more IP than CPUs, such as GPUs, neural network accelerators, DRAM controllers, and PCIe controllers7. The stability of process nodes due to the ending of Moore’s Law make this goal easier than in the past. This necessity opens a path for architects to have impact by contributing open-source components much as their software colleagues do for databases and operating systems.

4) Agile Chip Development

As the focus of innovation in architecture shifts from the general-purpose CPU to domain-specific and heterogeneous processors, we will need to achieve major breakthroughs in design time and cost (as happened for VLSI in the 1980s). Small teams should be able to design chips, tailored for a specific domain or application. This will require that hardware design become much more efficient, and more like modern software design. Unlike the “waterfall” development process of giant chips by large companies, Agile development process8 allows small groups to iterate designs of working but incomplete prototypes for small chips. Fortuitously, the same programming language advances that improved reuse of software have been incorporated in recent hardware design languages, which makes hardware design and reuse easier. While one can stop at layout for a research paper, building real chips is inspiring for everyone in a project, and is the only way to verify important characteristics like timing and energy consumption. The good news is that today TMSC will deliver 100 small test chips in the latest technology for only $30,0009. Thus, virtually all projects can afford real chips as final validation of innovation as well as to enjoy the satisfaction of seeing your ideas work in silicon. We believe the deceleration of performance gains for standard microprocessors, the opportunities in high-level, domain-specific languages and security, the freeing of architects from the chains of proprietary ISAs, and (ironically) the ending of Dennard scaling and Moore’s law will lead to another Golden Age for architecture. Aided by an open-source ecosystem, agily developed prototypes will demonstrate advances and thereby accelerate commercial adoption. We envision the same rapid improvement as in the last Golden Age, but this time in cost, energy, and security as well in performance.

What an exciting time to be a computer architect!

1. Carver Mead, and Lynn Conway. “Introduction to VLSI systems,” Addison-Wesley, 1980.

2. Mark Hill. “A Primer on the Meltdown & Spectre Hardware Security Design Flaws and their Important Implications,” Computer Architecture Today Blog, February 15, 2018,https://www.sigarch.org/ a-primer-on-the-meltdown-spectre-hardware-security-design-flaws-and-their-important-implications.

3. John L. Hennessy, and David A. Patterson. “Domain Specific Architectures,” in Computer architecture: a quantitative approach, Sixth Edition, Elsevier, 2018.

4. Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, et al. “In-datacenter performance analysis of a Tensor Processing Unit,” in Proc. 44th Annual International Symposium on Computer Architecture, pp. 1-12. ACM, 2017.

5. Luis Ceze, Mark Hill, Karthikeyan Sankaralingam, and Thomas Wenisch. “Democratizing Design for Future Computing Platforms,” June 26, 2017, www.cccblog.org/2017/06/26/democratizing-design-for-future-computing-platforms.

6. www.riscv.org.

7. DARPA, Broad Agency Announcement. “Electronics Resurgence Initiative,” September 13, 2017.

8. Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, et al. “An agile approach to building RISC-V microprocessors,” IEEE Micro 36, no. 2 (2016): 8-20.<

9. David A. Patterson, and Borivoje Nikolić. “Agile Design for Hardware, Parts I, II, III,” EE Times, July 27 to August 3, 2015.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This