Hennessy & Patterson: A New Golden Age for Computer Architecture

By Staff

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles.

The celebrated computer architects have penned this short article (published on the ISCA website), previewing their talk.

“A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, and Agile Chip Development”

by John L. Hennessy and David A. Patterson

In the 1980s, Mead and Conway1 democratized chip design and high-level language programming surpassed assembly language programming, which made instruction set advances viable. Innovations like RISC, superscalar, multilevel caches, and speculation plus compiler advances (especially in register allocation) ushered in a Golden Age of computer architecture, when performance increased annually by 60%. In the later 1990s and 2000s, architectural innovation decreased, so performance came primarily from higher clock rates and larger caches. The ending of Dennard Scaling and Moore’s Law also slowed this path; single core performance improved only 3% last year! In addition to poor performance gains of modern microprocessors, Spectre recently demonstrated timing attacks that leak information at high rates2.

We’re on the cusp of another Golden Age that will significantly improve cost, performance, energy, and security. These architecture challenges are even harder given that we’ve lost the exponentially increasing resources provided by Dennard scaling and Moore’s law. We’ve identified areas that are critical to this new age:

1) Hardware/Software Co-Design for High-Level and Domain-Specific Languages

Advanced programming languages like Python and domain-specific languages like TensorFlow have dramatically improved programmer productivity by increasing software reuse and by raising the level of abstraction. Whereas compiler-architecture co-design delivered gains of about three in the 1980s for C compilers and RISC architectures, new advances could create compilers and domain-specific architectures3 (DSAs) that deliver tenfold or more jumps4 in this new Golden Age.

2) Enhancing Security

We’ve made tremendous gains in information technology (IT) in the past 40 years, but if security is a war, we’re losing it. Thus far, architects have been asked for little beyond page-level protection and supporting virtual machines. The very definition of computer architecture ignores timing, yet Spectre shows that attacks that can determine timing of operations can leak supposedly protected data. It’s time for architects to redefine computer architecture and treat security as a first class citizen to protect data from timing attacks, or at worst reduce information leaks to a trickle.

3) Free and Open Architectures and Open-Source Implementations

Progress on these issues likely will require changes to the instruction set architecture (ISA), which is problematic for proprietary ISAs. For tall challenges like these, we want all the best minds to work on them, not only the engineers who work for the ISA owners. Thus, a free and open ISA such as RISC-V can be a boon to researchers5 because:

  • Many people in many organizations can innovate simultaneously using RISC-V.
  • The ISA is designed for modularity and extensions.
  • It comes with a complete software stack, including compilers, operating systems, and debuggers, which are open source and thus also modifiable.
  • This modern ISA is designed to work for any application, from cloud-level servers down to mobile and IoT devices.
  • RISC-V is driven by a 100-member foundation6 that ensures its long-term stability and evolution.

Unlike the past, open ISAs are viable because many engineers for a wide range of products are designing SOCs by incorporating IP and because ARM has demonstrated that IP works for ISAs.

An open architecture also enables open-source processor designs for both FPGAs and real chips, so architects can innovate by modifying an existing RISC-V design and its software stack. While FPGAs run at perhaps only 100 MHz, that is fast enough to run trillions of instructions or to be deployed on the Internet to test a security feature against real attacks. Given the plasticity of FPGAs, the RISC-V ecosystem enables experimental investigations of novel features that can be deployed, evaluated, and iterated in days rather than in years. That vision requires more IP than CPUs, such as GPUs, neural network accelerators, DRAM controllers, and PCIe controllers7. The stability of process nodes due to the ending of Moore’s Law make this goal easier than in the past. This necessity opens a path for architects to have impact by contributing open-source components much as their software colleagues do for databases and operating systems.

4) Agile Chip Development

As the focus of innovation in architecture shifts from the general-purpose CPU to domain-specific and heterogeneous processors, we will need to achieve major breakthroughs in design time and cost (as happened for VLSI in the 1980s). Small teams should be able to design chips, tailored for a specific domain or application. This will require that hardware design become much more efficient, and more like modern software design. Unlike the “waterfall” development process of giant chips by large companies, Agile development process8 allows small groups to iterate designs of working but incomplete prototypes for small chips. Fortuitously, the same programming language advances that improved reuse of software have been incorporated in recent hardware design languages, which makes hardware design and reuse easier. While one can stop at layout for a research paper, building real chips is inspiring for everyone in a project, and is the only way to verify important characteristics like timing and energy consumption. The good news is that today TMSC will deliver 100 small test chips in the latest technology for only $30,0009. Thus, virtually all projects can afford real chips as final validation of innovation as well as to enjoy the satisfaction of seeing your ideas work in silicon. We believe the deceleration of performance gains for standard microprocessors, the opportunities in high-level, domain-specific languages and security, the freeing of architects from the chains of proprietary ISAs, and (ironically) the ending of Dennard scaling and Moore’s law will lead to another Golden Age for architecture. Aided by an open-source ecosystem, agily developed prototypes will demonstrate advances and thereby accelerate commercial adoption. We envision the same rapid improvement as in the last Golden Age, but this time in cost, energy, and security as well in performance.

What an exciting time to be a computer architect!

1. Carver Mead, and Lynn Conway. “Introduction to VLSI systems,” Addison-Wesley, 1980.

2. Mark Hill. “A Primer on the Meltdown & Spectre Hardware Security Design Flaws and their Important Implications,” Computer Architecture Today Blog, February 15, 2018,https://www.sigarch.org/ a-primer-on-the-meltdown-spectre-hardware-security-design-flaws-and-their-important-implications.

3. John L. Hennessy, and David A. Patterson. “Domain Specific Architectures,” in Computer architecture: a quantitative approach, Sixth Edition, Elsevier, 2018.

4. Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, et al. “In-datacenter performance analysis of a Tensor Processing Unit,” in Proc. 44th Annual International Symposium on Computer Architecture, pp. 1-12. ACM, 2017.

5. Luis Ceze, Mark Hill, Karthikeyan Sankaralingam, and Thomas Wenisch. “Democratizing Design for Future Computing Platforms,” June 26, 2017, www.cccblog.org/2017/06/26/democratizing-design-for-future-computing-platforms.

6. www.riscv.org.

7. DARPA, Broad Agency Announcement. “Electronics Resurgence Initiative,” September 13, 2017.

8. Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, et al. “An agile approach to building RISC-V microprocessors,” IEEE Micro 36, no. 2 (2016): 8-20.<

9. David A. Patterson, and Borivoje Nikolić. “Agile Design for Hardware, Parts I, II, III,” EE Times, July 27 to August 3, 2015.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This